Browsing by Author "Poirel, Christopher L."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Bridging Methodological Gaps in Network-Based Systems BiologyPoirel, Christopher L. (Virginia Tech, 2013-10-16)Functioning of the living cell is controlled by a complex network of interactions among genes, proteins, and other molecules. A major goal of systems biology is to understand and explain the mechanisms by which these interactions govern the cell's response to various conditions. Molecular interaction networks have proven to be a powerful representation for studying cellular behavior. Numerous algorithms have been developed to unravel the complexity of these networks. Our work addresses the drawbacks of existing techniques. This thesis includes three related research efforts that introduce network-based approaches to bridge current methodological gaps in systems biology. i. Functional enrichment methods provide a summary of biological functions that are overrepresented in an interesting collection of genes (e.g., highly differentially expressed genes between a diseased cell and a healthy cell). Standard functional enrichment algorithms ignore the known interactions among proteins. We propose a novel network-based approach to functional enrichment that explicitly accounts for these underlying molecular interactions. Through this work, we close the gap between set-based functional enrichment and topological analysis of molecular interaction networks. ii. Many techniques have been developed to compute the response network of a cell. A recent trend in this area is to compute response networks of small size, with the rationale that only part of a pathway is often changed by disease and that interpreting small subnetworks is easier than interpreting larger ones. However, these methods may not uncover the spectrum of pathways perturbed in a particular experiment or disease. To avoid these difficulties, we propose to use algorithms that reconcile case-control DNA microarray data with a molecular interaction network by modifying per-gene differential expression p-values such that two genes connected by an interaction show similar changes in their gene expression values. iii. Top-down analyses in systems biology can automatically find correlations among genes and proteins in large-scale datasets. However, it is often difficult to design experiments from these results. In contrast, bottom-up approaches painstakingly craft detailed models of cellular processes. However, developing the models is a manual process that can take many years. These approaches have largely been developed independently. We present Linker, an efficient and automated data-driven method that analyzes molecular interactomes. Linker combines teleporting random walks and k-shortest path computations to discover connections from a set of source proteins to a set of target proteins. We demonstrate the efficacy of Linker through two applications: proposing extensions to an existing model of cell cycle regulation in budding yeast and automated reconstruction of human signaling pathways. Linker achieves superior precision and recall compared to state-of-the-art algorithms from the literature.
- Network-based functional enrichmentPoirel, Christopher L.; Owens, Clifford C. III; Murali, T. M. (2011-11-30)Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i) determine which functions are enriched in a given network, ii) given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii) given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are implemented in C++ and are freely available under the GNU General Public License at our supplementary website. Additionally, all our input data and results are available at http://bioinformatics.cs.vt.edu/~murali/supplements/2011-incob-nbe/.
- RFouh, Eric; Poirel, Christopher L. (2010-11-25)This module covers use of the R language for performing the statistical analysis needed for several information retrieval (IR) techniques. The R language is extremely extensive and a powerful tool. R will not be covered completely in this module. Rather, we hope to introduce some of the more common tools used in IR, such as matrix and vector manipulations.
- WordNetFouh, Eric; Poirel, Christopher L. (2010-10-25)This module covers the use of a thesaurus in several information retrieval (IR) techniques: index construction (e.g., tokenization, stemming, and lemmatization), robustness to query typographical errors (e.g., the use of wildcard queries) and query refinement and expansion.