Browsing by Author "Popov, Vsevolod L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infectionYoshikawa, Tomoki; Hill, Terence E.; Yoshikawa, Naoko; Popov, Vsevolod L.; Galindo, Cristi L.; Garner, Harold R.; Peters, C. J.; Tseng, Chien-Te (Kent) (Public Library of Science, 2010-01-15)Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndromeassociated coronavirus (SARS-CoV). Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarraybased functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NF)kB, activator protein (AP)-1, and interferon regulatory factor (IRF)-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i.), resulting in the activation of many antiviral genes, including interferon (IFN)-b, -ls, inflammatory mediators, and many IFN-stimulated genes (ISGs). We also showed, for the first time, that IFN-b and IFN-ls were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.
- Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systemsAuguste, A. Jonathan; Langsjoen, Rose M.; Porier, Danielle L.; Erasmus, Jesse H.; Bergren, Nicholas A.; Bolling, Bethany G.; Luo, Huanle; Singh, Ankita; Guzman, Hilda; Popov, Vsevolod L.; da Rosa, Amelia P. A. Travassos; Wang, Tian; Kang, Lin; Allen, Irving C.; Carrington, Christine V. F.; Tesh, Robert B.; Weaver, Scott C. (2021-10)We describe the isolation and characterization of a novel insect-specific flavivirus (ISFV), tentatively named Aripo virus (ARPV), that was isolated from Psorophora albipes mosquitoes collected in Trinidad. The ARPV genome was determined and phylogenetic analyses showed that it is a dual host associated ISFV, and clusters with the main mosquito-borne flaviviruses. ARPV antigen was significantly cross-reactive with Japanese encephalitis virus serogroup antisera, with significant cross-reactivity to Ilheus and West Nile virus (WNV). Results suggest that ARPV replication is limited to mosquitoes, as it did not replicate in the sandfly, culicoides or vertebrate cell lines tested. We also demonstrated that ARPV is endocytosed into vertebrate cells and is highly immunomodulatory, producing a robust innate immune response despite its inability to replicate in vertebrate systems. We show that prior infection or coinfection with ARPV limits WNV-induced disease in mouse models, likely the result of a robust ARPV-induced type I interferon response.
- Surface Proteome Analysis and Characterization of Surface Cell Antigen (Sca) or Autotransporter Family of Rickettsia typhiSears, Khandra T.; Ceraul, Shane M.; Gillespie, Joseph J.; Allen, Edwin D., Jr.; Popov, Vsevolod L.; Ammerman, Nicole C.; Rahman, M. Sayeedur; Azad, Abdu F. (Public Library of Science, 2012-08-09)Surface proteins of the obligate intracellular bacterium Rickettsia typhi, the agent of murine or endemic typhus fever, comprise an important interface for host-pathogen interactions including adherence, invasion and survival in the host cytoplasm. In this report, we present analyses of the surface exposed proteins of R. typhi based on a suite of predictive algorithms complemented by experimental surface-labeling with thiol-cleavable sulfo-NHS-SS-biotin and identification of labeled peptides by LC MS/MS. Further, we focus on proteins belonging to the surface cell antigen (Sca) autotransporter (AT) family which are known to be involved in rickettsial infection of mammalian cells. Each species of Rickettsia has a different complement of sca genes in various states; R. typhi, has genes sca1 thru sca5. In silico analyses indicate divergence of the Sca paralogs across the four Rickettsia groups and concur with previous evidence of positive selection. Transcripts for each sca were detected during infection of L929 cells and four of the five Sca proteins were detected in the surface proteome analysis. We observed that each R. typhi Sca protein is expressed during in vitro infections and selected Sca proteins were expressed during in vivo infections. Using biotin-affinity pull down assays, negative staining electron microscopy, and flow cytometry, we demonstrate that the Sca proteins in R. typhi are localized to the surface of the bacteria. All Scas were detected during infection of L929 cells by immunogold electron microscopy. Immunofluorescence assays demonstrate that Scas 1–3 and 5 are expressed in the spleens of infected Sprague-Dawley rats and Scas 3, 4 and 5 are expressed in cat fleas (Ctenocephalides felis). Sca proteins may be crucial in the recognition and invasion of different host cell types. In short, continuous expression of all Scas may ensure that rickettsiae are primed i) to infect mammalian cells should the flea bite a host, ii) to remain infectious when extracellular and iii) to infect the flea midgut when ingested with a blood meal. Each Sca protein may be important for survival of R. typhi and the lack of host restricted expression may indicate a strategy of preparedness for infection of a new host.