Browsing by Author "Pothayee, Nipon"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug ReleaseZhang, Rui; Fellows, Benjamin; Pothayee, Nikorn; Hu, Nan; Pothayee, Nipon; Jo, Ami; Bohórquez, Ana C.; Rinaldi, Carlos; Mefford, Olin Thompson; Davis, Richey M.; Riffle, Judy S. (Hindawi, 2018-08-05)Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueous media, and their sizes were stable under simulated physiological conditions for at least 7 days. The anticancer drugs, cisplatin and carboplatin, were loaded into the complexes, and sustained release of both drugs was observed. The transverse NMR relaxivities (s) of the complexes were 244 s−1 (mM Fe)−1 which is fast compared to either the commercial T2-weighted MRI agent Feridex IV® or our previously reported magnetite-block ionomer complexes. Phantom MRI images of the complexes demonstrated excellent negative contrast effects of such complexes. Thus, the bisphosphonate-bearing MGICs could be promising candidates for dual drug delivery and magnetic resonance imaging. Moreover, the bisphosphonate MGICs generate heat under an alternating magnetic field of 30 kA·m−1 at 206 kHz. The temperature of the MGIC dispersion in deionized water increased from 37 to 41°C after exposure to the magnetic field for 10 minutes, corresponding to a specific absorption rate of 77.0 W·g−1. This suggests their potential as hyperthermia treatment agents as well as the possibility of temperature-dependent drug release, making MGICs more versatile in potential drug delivery applications.
- Development of Polymeric Nanocarriers for Dual Magnetic Resonance Imaging and Drug DeliveryPothayee, Nipon (Virginia Tech, 2013-12-02)Two types of (polymer-imaging agent-drug) complexes were prepared and characterized. These included block and graft copolymer complexes with magnetite nanoparticles and manganese ions. Magnetite block ionomer complexes (MBICs) were formed through binding of a portion of the anionic segment of poly(ethylene oxide)-b-poly(acrylic acid) (PEO-b-PAA) block copolymers with the magnetite nanoparticle surfaces. The remainder of the carboxylic acids were utilized to bind with high concentrations of the cationic antibiotic gentamicin (31 wt%). A near zero-order release of gentamicin (pH 7.4 in PBS) that reached ~35 wt% of the initial gentamicin within 10 hours was observed, and this was followed by slower release of another 7 % by 18 hours. These nanoparticles were efficiently taken up by macrophages and appeared to enhance intracellular antimicrobial activities of gentamicin. To increase the complex sizes and NMR T2 relaxivities, amine functional MBICs (MBICs-NH2) were first assembled by adsorbing the polyacrylate block of an aminofunctional poly(ethylene oxide)-b-poly(acrylic acid)) (H2N-PEO-b-PAA) copolymer onto magnetite nanoparticles. Amines at the tips of the H2N-PEO corona were then linked through reaction with a PEO diacrylate oligomer to yield MBIClusters where the metal oxides in the precursor nanoparticles were distinctly separated by the hydrophilic polymer. These MBIClusters with hydrophilic intra-cluster space had transverse relaxivities (r2's) that increased from 190 to 604 s-1 mM Fe-1 measured at 1.4 T and 37°C as their average sizes increased. The clusters were loaded with up to ~38 wt% of the multi-cationic drug gentamicin. MRI scans focused on the livers of mice demonstrated that these MBIClusters are very sensitive contrast agents. These results indicate that these complexes could be potential theranostic agents for dual imaging and drug delivery. Manganese graft ionomer complexes (MaGICs) comprised of Mn ions and a novel polyaminobisphosphonate-g-PEO copolymer were developed for use as T1 weighted MRI positive contrast agents. The graft copolymers were prepared by free radical copolymerization of ammonium bisphosphonate methacrylate monomers with PEO-acrylate macromonomers. The complexes exhibited good colloidal stability without release of free manganese and did not show any in vitro toxicity against mouse hepatocytes. The T1 relaxivities of the MaGICs were 2-10 times higher than that of a commercial manganese based contrast agent MnDPDP. These MaGICs with encapsulated anticancer drugs including doxorubicin, cisplatin and carboplatin have encapsulation efficiencies of 80-100 %. Drug release was sustained and depended on environmental pH, drug structure and drug concentration in the MaGICs. Moreover, these drug-loaded complexes exhibited high anticancer efficacy against MCF-7 breast cancer cells. The prominent MRI relaxivities and high anticancer efficacy suggest that these MaGICs have potential as effective dual imaging and chemotherapeutic agents.
- Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal DisruptionMaster, Alyssa M.; Williams, Philise N.; Pothayee, Nikorn; Pothayee, Nipon; Zhang, Rui; Vishwasrao, Hemant M.; Golovin, Yuri I.; Riffle, Judy S.; Sokolsky, Marina; Kabanov, Alexander V. (Springer Nature, 2016-09-20)Motion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (> 250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells. These particles are coated by block copolymers, which facilitates their entry into the cells and clustering in the lysosomes, where they are then magneto-mechanically actuated by remotely applied alternating current (AC) magnetic fields of very low frequency (50 Hz). Such fields and treatments are safe for surrounding tissues but produce cytoskeletal disruption and subsequent death of cancer cells while leaving healthy cells intact.