Browsing by Author "Prevots, D. Rebecca"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Tenets of a holistic approach to drinking water-associated pathogen research, management, and communicationProctor, Caitlin; Garner, Emily; Hamilton, Kerry A.; Ashbolt, Nicholas J.; Caverly, Lindsay J.; Falkinham, Joseph O. III; Haas, Charles N.; Prevost, Michele; Prevots, D. Rebecca; Pruden, Amy; Raskin, Lutgarde; Stout, Janet; Haig, Sarah-Jane (Pergamon-Elsevier Science, 2022-03-01)In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
- Vanadium in groundwater aquifers increases the risk of MAC pulmonary infection in O'ahu, Hawai'iLipner, Ettie M.; French, Joshua P.; Nelson, Stephen; Falkinham, Joseph O. III; Mercaldo, Rachel A.; Blakney, Rebekah A.; Daida, Yihe G.; Frankland, Timothy B.; Messier, Kyle P.; Honda, Jennifer R.; Honda, Stacey; Prevots, D. Rebecca (Lippincott Williams & Wilkins, 2022-10)Rationale: Hawai'i has the highest prevalence of nontuberculous mycobacterial (NTM) pulmonary disease in the United States. Previous studies indicate that certain trace metals in surface water increase the risk of NTM infection. Objective: To identify whether trace metals influence the risk of NTM infection in O'ahu, Hawai'i. Methods: A population-based ecologic cohort study was conducted using NTM infection incidence data from patients enrolled at Kaiser Permanente Hawai'i during 2005-2019. We obtained sociodemographic, microbiologic, and geocoded residential data for all Kaiser Permanente Hawai'i beneficiaries. To estimate the risk of NTM pulmonary infection from exposure to groundwater constituents, we obtained groundwater data from three data sources: (1) Water Quality Portal; (2) the Hawai'i Department of Health; and (3) Brigham Young University, Department of Geological Science faculty. Data were aggregated by an aquifer and were associated with the corresponding beneficiary aquifer of residence. We used Poisson regression models with backward elimination to generate models for NTM infection risk as a function of groundwater constituents. We modeled two outcomes: Mycobacterium avium complex (MAC) species and Mycobacterium abscessus group species. Results: For every 1-unit increase in the log concentration of vanadium in groundwater at the aquifer level, infection risk increased by 22% among MAC patients. We did not observe significant associations between water-quality constituents and infection risk among M. abscessus patients. Conclusions: Concentrations of vanadium in groundwater were associated with MAC pulmonary infection in O'ahu, Hawai'i. These findings provide evidence that naturally occurring trace metals influence the presence of NTM in water sources that supply municipal water systems.