Browsing by Author "Pusch, Gordon D."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equationPusch, Gordon D. (Virginia Tech, 1990)I present two differential-algebraic (DA) methods for approximately solving the Hamilton- Jacobi (HJ) equation. I use the “automatic differentiation” property of DA to convert the nonlinear partial-differential HJ equation into a initial-value problem for a DA-valued first-order ordinary differential equation (ODE), the “HJ/DA equation”. The solution of either form of the HJ/DA equation is equivalent to a perturbative expansion of Hamilton’s principle function about some reference trajectory (RT) through the system. The HJ/DA method also extracts the equations of motion for the RT itself. Hamilton’s principle function generates the canonical transformation, or mapping, between the initial and final state of every trajectory through the system. Since the map is represented by a generating function, it must automatically be symplectic, even in the presence of round-off error. The DA-valued ODE produced by either form of HJ/DA is equivalent tc a hierarchically-ordered system of real-valued ODEs without “feedback” terms; therefore the hierarchy may be truncated at any (arbitrarily high) order without loss of self consistency. The HJ/DA equation may be numerically integrated using standard algorithms, if all mathematical operations are done in DA. I show that the norm of the DA-valued part of the solution is bounded by linear growth. The generating function may be used to track either particles or the moments of a particle distribution through the system. In the first method, all information about the perturbative dynamics is contained in the DA-valued generating function. I numerically integrate the HJ/DA equation, with the identity as the initial generating function. A difficulty with this approach is that not all canonical transformations can be represented by the class of generating functions connected to the identity; one finds that with the required initial conditions, the generating function becomes singular near caustics or foci. One may continue integrating through a caustic by using a Legendre transformation to obtain a new (but equivalent) generating function which is singular near the identity, but nonsingular near the caustic. However the Legendre transformation is a numerically costly procedure, so one would not want to do this often. This approach is therefore not practical for systems producing periodic motions, because one must perform a Legendre transformation four times per period. The second method avoids the caustic problem by representing only the nonlinear part of the dynamics by a generating function. The linearized dynamics is treated separately via matrix techniques. Since the nonlinear part of the dynamics may always be represented by a near-identity transformation, no problem occurs when passing through caustics. I successfully verify the HJ/DA method by applying it to three problems which can be solved in closed form. Finally, I demonstrate the method’s utility by using it to optimize the length of a lithium lens for minimum beam divergence via the moment-tracking technique.
- Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource CenterWattam, Alice R.; Davis, James J.; Assaf, Rida; Boisvert, Sebastien; Brettin, Thomas; Bun, Christopher; Conrad, Neal; Dietrich, Emily M.; Disz, Terry L.; Gabbard, Joseph L.; Gerdes, Svetlana; Henry, Christopher S.; Kenyon, Ronald W.; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K.; Olsen, Gary J.; Murphy-Olson, Daniel E.; Olson, Robert D.; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Warren, Andrew S.; Xia, Fangfang; Yoo, Hyunseung; Stevens, Rick L. (2017-01-04)The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user- created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by `virtual integration' to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.
- The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilitiesDavis, James J.; Wattam, Alice R.; Aziz, Ramy K.; Brettin, Thomas; Butler, Ralph; Butler, Rory M.; Chlenski, Philippe; Conrad, Neal; Dickerman, Allan W.; Dietrich, Emily M.; Gabbard, Joseph L.; Gerdes, Svetlana; Guard, Andrew; Kenyon, Ronald W.; Machi, Dustin; Mao, Chunhong; Murphy-Olson, Daniel E.; Nguyen, Marcus; Nordberg, Eric K.; Olsen, Gary J.; Olson, Robert D.; Overbeek, Jamie C.; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomas, Chris; VanOeffelen, Margo; Vonstein, Veronika; Warren, Andrew S.; Xia, Fangfang; Xie, Dawen; Yoo, Hyunseung; Stevens, Rick L. (2020-01-08)The PathoSystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center funded by the National Institute of Allergy and Infectious Diseases (https://www.patricbrc.org). PATRIC supports bioinformatic analyses of all bacteria with a special emphasis on pathogens, offering a rich comparative analysis environment that provides users with access to over 250 000 uniformly annotated and publicly available genomes with curated metadata. PATRIC offers web-based visualization and comparative analysis tools, a private workspace in which users can analyze their own data in the context of the public collections, services that streamline complex bioinformatic workflows and command-line tools for bulk data analysis. Over the past several years, as genomic and other omics-related experiments have become more cost-effective and widespread, we have observed considerable growth in the usage of and demand for easy-to-use, publicly available bioinformatic tools and services. Here we report the recent updates to the PATRIC resource, including new web-based comparative analysis tools, eight new services and the release of a command-line interface to access, query and analyze data.
- PATRIC, the bacterial bioinformatics database and analysis resourceWattam, Alice R.; Abraham, David; Dalay, Oral; Disz, Terry L.; Driscoll, Timothy; Gabbard, Joseph L.; Gillespie, Joseph J.; Gough, Roger; Hix, Deborah; Kenyon, Ronald W.; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K.; Olson, Robert; Overbeek, Ross; Pusch, Gordon D.; Shukla, Maulik; Schulman, Julie; Stevens, Rick L.; Sullivan, Daniel E.; Vonstein, Veronika; Warren, Andrew S.; Will, Rebecca; Wilson, Meredith J. C.; Yoo, Hyunseung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno (2014-01)The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e. g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.
- PATtyFams: Protein Families for the Microbial Genomes in the PATRIC DatabaseDavis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung (Frontiers, 2016-02-08)The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.
- RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomesBrettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, James A., III; Stevens, Rick L.; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang (Springer Nature, 2015-02-10)The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.
- The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)Overbeek, Ross; Olson, Robert; Pusch, Gordon D.; Olsen, Gary J.; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Parrello, Bruce; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang; Stevens, Rick L. (2014-01)In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources.