Browsing by Author "Qu, Xin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Automated Testbench Generation for Communication SystemsQu, Xin (Virginia Tech, 2000-11-28)This thesis develops semi-automated methods to generate testbenches for VHDL models of communication systems. To illustrate the methods, a VHDL model was constructed for the speech-coding channel of the Global System for Mobile Communication (GSM). GSM is the Pan-European digital mobile telephony standard specified by the European Telecommunication Standards Institute (ETSI). This thesis emphasizes the error detection and error correction procedures that form an important part of the standard. First, a test bench template was generated using "Testbench Pro", a waveform generation tool developed by SynaptiCAD. The template includes a random sequence of speech data. A C program was then developed as a user interface to control the simulation procedure. Using the C program, the user can select a test bench template and specify the input test vectors. The C program adds the user's test vectors to the test bench template to create a final VHDL test bench that is ready for simulation. The testing data is then encoded by the GSM encoder models, passed through the noisy channel model that introduces errors into the data stream and, finally, passed through the GSM decoder models which attempt to correct the channel errors. Sophisticated error detection and error correction algorithms are used in the encoder/decoder models to increase the reliability of data transmission over the noisy channel. Finally, the original speech data is compared to the decoder output to detect any remaining bit errors and to evaluate the system performance. The simulation system is semi-automated. The user selects a set of parameters using the C program interface. A testbench is then automatically created and simulated. Two final report files are automatically generated. No user interaction is needed after the initial parameter selection. Several experiments were performed to illustrate the various features of the automated testbench generation system.
- The State-of-the-Art Review on Molecular Dynamics Simulation of Asphalt BinderQu, Xin; Wang, Dawei; Wang, Linbing; Huang, Yucheng; Hou, Yue; Oeser, Markus (Hindawi, 2018-09-03)Asphalt pavement has been widely used in the world. As the main components of asphalt pavement, the asphalt binder is crucial to the service performance and life of the road. In the past decades, numerous studies were conducted on technical performance, aging, and modification of the asphalt binder. With the development of modern technology, it was discovered that the microscopic properties, aging mechanism, and modification mechanism of the asphalt binder affect the macroscopic performance of asphalt pavement significantly. As a new emerging powerful numerical tool, the molecular dynamics (MD) simulation has been developed to study the asphalt binder material from a micro perspective. Based on the previous studies, some average asphalt binder models, fractional asphalt binder models, aged asphalt binder models, and modifier models were proposed by many researchers, which have made remarkable progress in asphalt studies; the microproperties, aging mechanism, and modification mechanism of the asphalt binder can also be analyzed using the MD simulation. Overall, the state-of-the-art review provides a comprehensive view for the readers to better understand the development, establishment, and application of the asphalt molecular model.
- Using a Molecular Dynamics Simulation to Investigate Asphalt Nano-Cracking under External Loading ConditionsHou, Yue; Wang, Linbing; Wang, Dawei; Qu, Xin; Wu, Jiangfeng (MDPI, 2017-07-28)Recent research shows that macro-scale cracking in asphalt binder may originate from its intrinsic defects at the nano-scale. In this paper, a molecular dynamics (MD) simulation was conducted to evaluate the nucleation of natural defects in asphalt. The asphalt microstructure was modeled using an ensemble of three different types of molecules to represent a constituent species: asphaltenes, naphthene aromatics and saturates, where the weight proportion of 20:60:20 was used to create an asphalt-like ensemble of molecules. Tension force was then applied on the molecular boundaries to study the crack initiation and propagation. It was discovered that the natural distribution of atoms at microscale would affect the intrinsic defects in asphalt and further influence crack initiation and propagation in asphalt.