Browsing by Author "Rabenhorst, Martin C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Changing the hierarchical placement of soil moisture regimes in Soil TaxonomyStolt, Mark H.; O'Geen, Anthony T.; Beaudette, Dylan E.; Drohan, Patrick J.; Galbraith, John M.; Lindbo, David L.; Monger, H. Curtis; Needelman, Brian A.; Ransom, Michel D.; Rabenhorst, Martin C.; Shaw, Joey N. (2021-05)Soil moisture and temperature are incorporated into Soil Taxonomy through the broad classes of moisture and temperature regimes. Although both are important variables in soil formation and land use, soil temperature regime (STR) is typically applied at the family level, whereas soil moisture regime (SMR) is applied at the suborder level. In this paper, we are questioning whether moving SMR to the family level will create a classification system that is more efficient and provide more information to the user at higher categories. The pros and cons of moving ustic, xeric, and udic SMRs from suborder to family category are discussed. To explore this potential change, we used Shannon diversity (Delta H) as an index of the information gain moving from order to suborder when classifying a soil. The analysis indicated a relatively small Delta H for most of the country considering current suborder classes. The proposed group of suborders, characterized by diagnostic horizons instead of SMR, conveyed a considerably larger Delta H supporting a substantial gain in information if the change was incorporated into Soil Taxonomy. The proposed change also has the potential to reduce the number of subgroup taxa by nearly 50%, without losing any of the current information within each taxa. Counterarguments for the change are that SMRs have soil genesis connotations and provide a way to group similar soils on broad-scale maps. A change in the hierarchy of SMRs within Soil Taxonomy could deemphasize the relevance of soil moisture to soil genesis, morphology, and ecology.
- Manganese-coated IRIS to document reducing soil conditionsRabenhorst, Martin C.; Drohan, Patrick J.; Galbraith, John M.; Moorberg, Colby; Spokas, Lesley; Stolt, Mark H.; Thompson, James A.; Turk, Judith; Vasilas, Bruce L.; Vaughan, Karen L. (Wiley, 2021-09-01)Iron-coated indicator of reduction in soils (IRIS) devices have been used for nearly two decades to help assess and document reducing conditions in soils, and official guidance has been approved for interpreting these data. Interest in manganese (Mn)-coated IRIS devices has increased because Mn oxides are reduced under more moderately reducing conditions than iron (Fe) oxides (which require strongly reducing conditions), such that they are expected to be better proxies for some important ecosystem services like denitrification. However, only recently has the necessary technology become available to produce Mn-coated IRIS, and the need is now emerging for guidance in interpreting data derived from Mn IRIS. Ninety-six data sets collected over a 2-yr period from 40 plots at 18 study sites among eight states were used to compare the performance of Mn-coated IRIS with Fe-coated IRIS and to assess the effect of duration of saturation and soil temperature as environmental drivers on the reduction and removal of the oxide coating. It appears that the current threshold prescribed by the National Technical Committee for Hydric Soils for Fe-coated IRIS is appropriate for periods when soil temperatures are warmer (>11 °C), but is unnecessarily conservative when soil temperatures are cooler (5–11 °C). In contrast, Mn-coated devices are particularly useful early in the growing season when soil temperatures are cool. Our data show that when using a threshold of 30% removal of Mn oxide coatings there is essentially 100% confidence of the presence of reducing soil conditions under cool (<11 °C) conditions.
- Soil Taxonomy Proposals for Acid Sulfate Soils and Subaqueous Soils Raised by the 8th International Acid Sulfate Soils ConferenceWessel, Barret M.; Galbraith, John M.; Stolt, Mark H.; Rabenhorst, Martin C.; Fanning, Delvin S.; Levin, Maxine J. (2017-12-11)The 8th International Acid Sulfate Soils Conference presented examples and discussions for classification of ‘acid sulfate soils’ and related issues for ‘subaqueous soils’. When these soils are disturbed or exposed, the sulfides (predominantly pyrite) react with oxygen to produce sulfuric acid; soil materials that do this to a great extent are recognised as ‘sulfidic materials’ in Soil Taxonomy. Soil Taxonomy describes physical and chemical properties and thresholds for incubation of sulfidic materials for acidification, and has developed definitions for features and materials commonly seen in these soils. However, based on discussions and examples from field tours the conference has several proposals to modify and add to existing definitions, such as adding new subgroups, defining sulfuric materials and editing the definition of the sulfuric horizon. These changes are centred on improving the interpretative value of taxa in Soil Taxonomy as well as use and management recommendations and their value in soil survey products.