Browsing by Author "Rai, Pallavi"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesisRai, Pallavi; Chuong, Christina; LeRoith, Tanya; Smyth, James W.; Panov, Julia; Levi, Moshe; Kehn-Hall, Kylene; Duggal, Nisha K.; Weger-Lucarelli, James (Elsevier, 2021-11-01)The COVID-19 pandemic has paralyzed the global economy and resulted in millions of deaths globally. People with co-morbidities like obesity, diabetes and hypertension are at an increased risk for severe COVID-19 illness. This is of overwhelming concern because 42% of Americans are obese, 30% are pre-diabetic and 9.4% have clinical diabetes. Here, we investigated the effect of obesity on disease severity following SARS-CoV-2 infection using a well-established mouse model of diet-induced obesity. Diet-induced obese and lean control C57BL/6 N mice, transduced for ACE2 expression using replication-defective adenovirus, were infected with SARS-CoV-2, and monitored for lung pathology, viral titers, and cytokine expression. No significant differences in tissue pathology or viral replication was observed between AdV transduced lean and obese groups, infected with SARS-CoV-2, but certain cytokines were expressed more significantly in infected obese mice compared to the lean ones. Notably, significant weight loss was observed in obese mice treated with the adenovirus vector, independent of SARS-CoV-2 infection, suggesting an obesity-dependent morbidity induced by the vector. These data indicate that the adenovirus-transduced mouse model of SARS-CoV-2 infection, as described here and elsewhere, may be inappropriate for nutrition studies.
- Expression of anti-chikungunya single-domain antibodies in transgenic Aedes aegypti reduces vector competence for chikungunya virus and Mayaro virusWebb, Emily M.; Compton, Austin; Rai, Pallavi; Chuong, Christina; Paulson, Sally L.; Tu, Zhijian; Weger-Lucarelli, James (Frontiers, 2023-06-12)Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.
- Intersecting Threats: Exploring Obesity's Impact on Viral Pathogenesis and TransmissionRai, Pallavi (Virginia Tech, 2024-05-28)Malnutrition, including both undernutrition and obesity, affects millions of people globally and is persistently on the rise. Obesity affects ~13% of adults globally and was identified as a risk factor for worse disease outcomes after the H1N1 influenza pandemic of 2009 and has since been shown to aggravate disease outcomes of respiratory viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mosquito-borne viruses like West Nile Virus (WNV), chikungunya virus (CHIKV) and Mayaro virus (MAYV) and reduce the vaccine efficacy for influenza and SARS-CoV-2. Obesity is associated with a chronic state of inflammation and dysregulated immune response which has been proposed to be one of the mechanisms driving the severity of coronavirus disease 2019 (COVID-19). These altered signatures or biomarkers might be associated with disease outcome and prognosis. Therefore, animal models reflecting the clinical outcomes and natural immune responses observed in humans are crucial to identifying reliable biomarkers. Using mouse hepatitis virus 1 (MHV-1) as a model for SARS-CoV-2, we established obesity as a risk factor and identified biomarkers and pathways associated with worse disease outcomes. Obesity rates in low and middle-income countries (LMICs) are approaching levels found in high-income countries (HICs). Mosquito-borne viral diseases like dengue, chikungunya, and Zika pose a significant threat to LMICs and cause huge health and economic losses. Obesity was shown to worsen alphavirus pathogenesis, but interestingly, it also reduced their transmission by mosquitoes. Given the global prevalence of obesity and mosquito-borne viruses, it is critical to understand how obesity drives reduced alphavirus transmission. Using a natural transmission cycle between lean and obese mice and mosquitoes, we confirmed that obesity reduced the transmission potential of alphaviruses like CHIKV and MAYV and activated the Toll pathway in mosquito midguts. Various genes and other pathways were also altered in response to obese bloodmeal at various time-points post-bloodmeal; however, one gene, AAEL009965, was downregulated in the mosquito midguts 1-day-post-bloodmeal and its knockdown led to reduced infection rates and titers in mosquitoes. Through this thesis, we aimed to utilize obesity as a tool to identify biomarkers to predict coronavirus disease outcomes and design effective alphavirus transmission control strategies.
- Noble Metal Organometallic Complexes Display Antiviral Activity against SARS-CoV-2Chuong, Christina; DuChane, Christine M.; Webb, Emily M.; Rai, Pallavi; Marano, Jeffrey M.; Bernier, Chad M.; Merola, Joseph S.; Weger-Lucarelli, James (MDPI, 2021-05-25)SARS-CoV-2 emerged in 2019 as a devastating viral pathogen with no available preventative or treatment to control what led to the current global pandemic. The continued spread of the virus and increasing death toll necessitate the development of effective antiviral treatments to combat this virus. To this end, we evaluated a new class of organometallic complexes as potential antivirals. Our findings demonstrate that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, Cp*Rh(1,3-dicyclohexylimidazol-2-ylidene)Cl2 (complex 2) and Cp*Rh(dipivaloylmethanato)Cl (complex 4), have direct virucidal activity against SARS-CoV-2. Subsequent in vitro testing suggests that complex 4 is the more stable and effective complex and demonstrates that both 2 and 4 have low toxicity in Vero E6 and Calu-3 cells. The results presented here highlight the potential application of organometallic complexes as antivirals and support further investigation into their activity.
- Widespread exposure to SARS-CoV-2 in wildlife communitiesGoldberg, Amanda R.; Langwig, Kate E.; Brown, Katherine L.; Marano, Jeffrey M.; Rai, Pallavi; King, Kelsie M.; Sharp, Amanda K.; Ceci, Alessandro; Kailing, Christopher D.; Kailing, Macy J.; Briggs, Russell; Urbano, Matthew G.; Roby, Clinton; Brown, Anne M.; Weger-Lucarelli, James; Finkielstein, Carla V.; Hoyt, Joseph R. (Springer, 2024-07-29)Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022–September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.