Browsing by Author "Rao, Vishwas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Machine learning based algorithms for uncertainty quantification in numerical weather prediction modelsMoosavi, Azam; Rao, Vishwas; Sandu, Adrian (Elsevier, 2021-03-01)Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors.
- Robust data assimilation using L1 and Huber normsRao, Vishwas; Sandu, Adrian; Ng, Michael; Nino-Ruiz, Elias D. (2015-11-06)Data assimilation is the process to fuse information from priors, observations of nature, and numerical models, in order to obtain best estimates of the parameters or state of a physical system of interest. Presence of large errors in some observational data, e.g., data collected from a faulty instrument, negatively affect the quality of the overall assimilation results. This work develops a systematic framework for robust data assimilation. The new algorithms continue to produce good analyses in the presence of observation outliers. The approach is based on replacing the traditional Ł2 norm formulation of data assimilation problems with formulations based on Ł1 and Huber norms. Numerical experiments using the Lorenz-96 and the shallow water on the sphere models illustrate how the new algorithms outperform traditional data assimilation approaches in the presence of data outliers.