Browsing by Author "Ratnieks, Francis L. W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decodingCouvillon, Margaret J.; Pearce, Fiona C. Riddell; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Llaura A.; Schürch, Roger; Ratnieks, Francis L. W. (Company of Biologists, 2012-05-15)Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- .100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.
- Waggle Dance Distances as Integrative Indicators of Seasonal Foraging ChallengesCouvillon, Margaret J.; Schürch, Roger; Ratnieks, Francis L. W. (PLOS, 2014-04-02)Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We ‘‘eavesdropped’’ on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable.