Browsing by Author "Redekar, Neelam R."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Candidate Gene Sequence Analyses toward Identifying Rsv3-Type Resistance to Soybean Mosaic VirusRedekar, Neelam R.; Clevinger, Elizabeth M.; Laskar, M. A.; Biyashev, Ruslan M.; Ashfield, Tom; Jensen, Roderick V.; Jeong, Soon-Chun; Tolin, Sue A.; Saghai-Maroof, Mohammad A. (Crop Science Society of America, 2016-05-13)Rsv3 is one of three genetic loci conferring strain-specific resistance to Soybean mosaic virus (SMV). The Rsv3 locus has been mapped to a 154-kb region on chromosome 14, containing a cluster of five nucleotide-binding leucine-rich repeat (NB-LRR) resistance genes. High sequence similarity between the Rsv3 candidate genes challenges fine mapping of the locus. Among the five, Glyma14g38533 showed the highest transcript abundance in 1 to 3 h of SMV-G7 inoculation. Comparative sequence analyses were conducted with the five Rsv3 candidate NB-LRR genes from susceptible (rsv-type) soybean [Glycine max (L.) Merr.] cultivar Williams 82, resistant (Rsv3-type) cultivar Hwangkeum, and resistant lines L29 and RRR. Sequence comparisons revealed that Glyma14g38533 had far more polymorphisms than the other candidate genes. Interestingly, Glyma14g38533 gene from Rsv3-type lines exhibited 150 single-nucleotide polymorphism (SNP and six insertion–deletion (InDel) markers relative to rsv-type line, Furthermore, the polymorphisms identified in three Rsv3-type lines were highly conserved. Several polymorphisms were validated in 18 Rsv3-type resistant and six rsv-type susceptible lines and were found associated with their disease response. The majority of the polymorphisms were located in LRR domain encoding region, which is involved in pathogen recognition via protein–protein interactions. These findings associating Glyma14g38533 with Rsv3-type resistance to SMV suggest it is the most likely candidate gene for Rsv3.
- Community-Driven Metadata Standards for Agricultural Microbiome ResearchDundore-Arias, Jose Pablo; Eloe-Fadrosh, Emiley A.; Schriml, Lynn M.; Beattie, Gwyn A.; Brennan, Fiona P.; Busby, Posy E.; Calderon, Rosalie B.; Castle, Sarah C.; Emerson, Joanne B.; Everhart, Sydney E.; Eversole, Kellye; Frost, Kenneth E.; Herr, Joshua R.; Huerta, Alejandra I.; Iyer-Pascuzzi, Anjali S.; Kalil, Audrey K.; Leach, Jan E.; Leonard, J.; Maul, Jude E.; Prithiviraj, Bharath; Potrykus, Marta; Redekar, Neelam R.; Rojas, J. Alejandro; Silverstein, Kevin A. T.; Tomso, Daniel J.; Tringe, Susannah G.; Vinatzer, Boris A.; Kinkel, Linda L. (2020-02-20)Accelerating the pace of microbiome science to enhance crop productivity and agroecosystem health will require transdisciplinary studies, comparisons among datasets, and synthetic analyses of research from diverse crop management contexts. However, despite the widespread availability of crop-associated microbiome data, variation in field sampling and laboratory processing methodologies, as well as metadata collection and reporting, significantly constrains the potential for integrative and comparative analyses. Here we discuss the need for agriculture-specific metadata standards for microbiome research, and propose a list of "required" and "desirable" metadata categories and ontologies essential to be included in a future minimum information metadata standards checklist for describing agricultural microbiome studies. We begin by briefly reviewing existing metadata standards relevant to agricultural microbiome research, and describe ongoing efforts to enhance the potential for integration of data across research studies. Our goal is not to delineate a fixed list of metadata requirements. Instead, we hope to advance the field by providing a starting point for discussion, and inspire researchers to adopt standardized procedures for collecting and reporting consistent and well-annotated metadata for agricultural microbiome research.
- Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.)Redekar, Neelam R.; Glover, Natasha M.; Biyashev, Ruslan M.; Ha, Bo-Keun; Raboy, Victor; Saghai-Maroof, Mohammad A. (2020-06-25)Two low-phytate soybean (Glycine max(L.) Merr.) mutant lines- V99-5089 (mipsmutation on chromosome 11) and CX-1834 (mrp-landmrp-nmutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint. A recombinant inbred population derived from the cross CX1834 x V99-5089 provides an opportunity to study the effect of different combinations of these three mutations on soybean phytate and oligosaccharides levels. Of the 173 recombinant inbred lines tested, 163 lines were homozygous for various combinations of MIPS and two MRP loci alleles. These individuals were grouped into eight genotypic classes based on the combination of SNP alleles at the three mutant loci. The two genotypic classes that were homozygousmrp-l/mrp-nand either homozygous wild-type or mutant at themipslocus (MIPS/mrp-l/mrp-normips/mrp-l/mrp-n) displayed relatively similar similar to 55% reductions in seed phytate, 6.94 mg g(-1)and 6.70 mg g(-1)respectively, as compared with 15.2 mg g(-1)in the wild-type MIPS/MRP-L/MRP-N seed. Therefore, in the presence of the double mutantmrp-l/mrp-n, themipsmutation did not cause a substantially greater decrease in seed phytate level. However, the nutritionally-desirable high-sucrose/low-stachyose/low-raffinose seed phenotype originally observed in soybeans homozygous for themipsallele was reversed in the presence ofmrp-l/mrp-nmutations: homozygousmips/mrp-l/mrp-nseed displayed low-sucrose (7.70%), high-stachyose (4.18%), and the highest observed raffinose (0.94%) contents per gram of dry seed. Perhaps the block in phytic acid transport from its cytoplasmic synthesis site to its storage site, conditioned bymrp-l/mrp-n, alters myo-inositol flux inmipsseeds in a way that restores to wild-type levels themipsconditioned reductions in raffinosaccharides. Overall this study determined the combinatorial effects of three low phytic acid causing mutations on regulation of seed phytate and oligosaccharides in soybean.
- Genome and Transcriptome Based Characterization of Low Phytate Soybean and Rsv3-Type Resistance to Soybean Mosaic VirusRedekar, Neelam R. (Virginia Tech, 2015-08-31)Soybean is a dominant oilseed cultivated worldwide for its use in multiple sectors such as food and feed industries, animal husbandry, cosmetics and pharmaceutical sectors, and more recently, in production of biodiesel. Increasing demand of soybean, changing environmental conditions, and evolution of pathogens pose challenges to soybean production in limited acreage. Genetic research is the key to ensure the continued growth in soybean production, with enhanced yield and quality, while reducing the losses due to diseases and pests. This research is focused on the understanding of transcriptional regulation of two economically important agronomic traits of soybean: low seed phytic acid and resistance to Soybean mosaic virus (SMV), using the 'transcriptomics' and 'genomics' approaches. The low phytic acid (lpa) soybean is more desirable than conventional soybean, as phytic acid is an anti-nutritional component of seed and is associated with phosphorus pollution. Despite the eco-friendly nature of the lpa soybean, it shows poor emergence, which reduces soybean yield. This research is mainly focused on addressing the impact of lpa-causing mutations on seed development, which is suspected to cause low emergence in lpa soybeans. The differences in transcriptome profiles of developing seeds in lpa and normal phytic acid soybean are revealed and the biological pathways that may potentially be involved in regulation of seed development are suggested. The second research project is focused on Rsv3-type resistance, which is effective against most virulent strains of Soybean mosaic virus. The Rsv3 locus, which maps on to soybean chromosome 14, contains 10 genes including a cluster of coiled coil-nucleotide binding-leucine rich repeat (CC-NB-LRR) protein-encoding genes. This dissertation employed a comparative sequencing approach to narrow down the list of Rsv3 gene candidates to the most promising CC-NB-LRR gene. The evidence provided in this study clearly indicates a single CC-NB-LRR gene as the most promising candidate to deliver Rsv3-type resistance.
- Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean linesRedekar, Neelam R.; Biyashev, Ruslan M.; Jensen, Roderick V.; Helm, Richard F.; Grabau, Elizabeth A.; Saghai-Maroof, Mohammad A. (2015-12-18)Background Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. Results RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. Conclusions This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.
- Inference of Transcription Regulatory Network in Low Phytic Acid Soybean SeedsRedekar, Neelam R.; Pilot, Guillaume; Raboy, Victor; Li, S.; Saghai-Maroof, Mohammad A. (Frontiers, 2017-11-30)A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.
- A transcriptional regulatory network of Rsv3- mediated extreme resistance against Soybean mosaic virusDeMers, Lindsay C.; Redekar, Neelam R.; Kachroo, Aardra; Tolin, Sue A.; Li, Song; Saghai-Maroof, Mohammad A. (PLOS, 2020-04-21)Resistance genes are an effective means for disease control in plants. They predominantly function by inducing a hypersensitive reaction, which results in localized cell death restricting pathogen spread. Some resistance genes elicit an atypical response, termed extreme resistance, where resistance is not associated with a hypersensitive reaction and its standard defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s) underlying extreme resistance is largely unexplored. One of the few known, naturally occurring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene, which confers resistance against the most virulent Soybean mosaic virus strains. To discern the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a gene regulatory network using transcriptomic data from time course comparisons of Soybean mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82, rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6 hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and salicylic acid pathways are suppressed. We identified putative regulatory interactions between transcription factors and genes in phytohormone regulatory pathways, which is consistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance. One such transcription factor identified as a putative transcriptional regulator was MYC2 encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic acid signaling, MYC2 specifically recognizes the G-box motif (“CACGTG”), which was significantly enriched in our data among differentially expressed genes implicated in abscisic acidand jasmonic acid-related activities. This suggests an important role for Glyma.07G051500 in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the findings from our network offer insights into genes and biological pathways underlying the molecular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic virus. The computational pipeline used to reconstruct the gene regulatory network in this study is freely available at https://github.com/LiLabAtVT/rsv3-network.