Browsing by Author "Reitz, Jonathan H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Demographic Consequences of Conservation Reserve Program Grasslands for Lesser Prairie-ChickensSullins, Daniel S.; Kraft, John D.; Haukos, David A.; Robinson, Samantha G.; Reitz, Jonathan H.; Plumb, Reid T.; Lautenbach, Joseph M.; Lautenbach, Jonathan D.; Sandercock, Brett K.; Hagen, Christian A. (2018-11)Knowledge of landscape and regional circumstances where conservation programs are successful on working lands inagricultural production are needed. Convertingmarginal croplands to grasslands using conservation programs such as the United States Department of Agriculture Conservation Reserve Program (CRP) should be beneficial for many grassland-obligate wildlife species; however, addition of CRP grasslands may result indifferent population effects based on regional climate, characteristics of the surrounding landscape, or species planted or established. Within landscapes occupied by lesser prairie-chickens (Tympanuchus pallidicinctus), CRP may provide habitat only for specific life stages and habitat selection for CRP may vary between wet and dry years. Among all study sites, we captured and fitted 280 female lesser prairie-chickens with very high frequency (VHF)- and global positioning system (GPS) transmitters during the spring lekking seasons of 2013-2015 to monitor habitat selection for CRP in regions of varying climate. We also estimated vital rates and habitat selection for 148 individuals, using sites in northwest Kansas, USA. The greatest ecological services of CRP became apparent when examining habitat selection and densities. Nest densities were approximately 3 times greater in CRP grasslands than native working grasslands (i.e., grazed), demonstrating a population-level benefit (CRP = 6.0 nests/10 km(2) +/- 1.29 [ SE], native working grassland = 1.7 nests/10 km(2) +/- 0.62). However, CRP supporting high nest density did not provide brood habitat; 85% of females with broods surviving to 7 days moved their young to other cover types. Regression analyses indicated lesser prairie-chickens were approximately 8 times more likely to use CRP when 5,000-ha landscapes were 70% rather than 20% grassland, indicating variation in the level of ecological services provided by CRP was dependent upon composition of the larger landscape. Further, CRP grasslands were 1.7 times more likely to be used by lesser prairie-chickens in regions receiving 40 cm compared to 70 cm of average annual precipitation and during years of greater drought intensity. Demographic and resource selection analyses revealed that establishing CRP grasslands in northwest Kansas can increase the amount nesting habitat in a region where it may have previously been limited, thereby providing refugia to sustain populations through periods of extreme drought. Nest survival, adult survival during breeding, and nonbreeding season survival did not vary between lesser prairie-chickens that used and did not use CRP grasslands. The finite rate of population growth was also similar for birds using CRP and using only native working grasslands, suggesting that CRP provides habitat similar to that of native working grassland in this region. Overall, lesser prairie-chickens may thrive in landscapes that are a mosaic of native working grassland, CRP grassland, with a minimal amount of cropland, particularly when nesting and brood habitat are in close proximity. (C) 2018 The Wildlife Society
- Identifying the diet of a declining prairie grouse using DNA metabarcodingSullins, Daniel S.; Haukos, David A.; Craine, Joseph M.; Lautenbach, Joseph M.; Robinson, Samantha G.; Lautenbach, Jonathan D.; Kraft, John D.; Plumb, Reid T.; Reitz, Jonathan H.; Sandercock, Brett K.; Fierer, Noah (2018-07)Diets during critical brooding and winter periods likely influence the growth of Lesser Prairie-Chicken (Tympanuchus pallidicinctus) populations. During the brooding period, rapidly growing Lesser Prairie-Chicken chicks have high calorie demands and are restricted to foods within immediate surroundings. For adults and juveniles during cold winters, meeting thermoregulatory demands with available food items of limited nutrient content may be challenging. Our objective was to determine the primary animal and plant components of Lesser Prairie-Chicken diets among native prairie, cropland, and Conservation Reserve Program (CRP) fields in Kansas and Colorado, USA, during brooding and winter using a DNA metabarcoding approach. Lesser Prairie-Chicken fecal samples (n = 314) were collected during summer 2014 and winter 2014-2015, DNA was extracted, amplified, and sequenced. A region of the cytochrome oxidase I (COI) gene was sequenced to determine the arthropod component of the diet, and a portion of the trnL intron region was used to determine the plant component. Relying on fecal DNA to quantify dietary composition, as opposed to traditional visual identification of gut contents, revealed a greater proportion of soft-bodied arthropods than previously recorded. Among 80 fecal samples for which threshold arthropod DNA reads were obtained, 35% of the sequences were most likely from Lepidoptera, 26% from Orthoptera, 14% from Araneae, 13% from Hemiptera, and 12% from other orders. Plant sequences from 137 fecal samples were composed of species similar to Ambrosia (27%), followed by species similar to Lactuca or Taraxacum (10%), Medicago (6%), and Triticum (5%). Forbs were the predominant (>50% of reads) plant food consumed during both brood rearing and winter. The importance both of native forbs and of a broad array of arthropods that rely on forbs suggests that disturbance regimes that promote forbs may be crucial in providing food for Lesser Prairie-Chickens in the northern portion of their distribution.
- Strategic conservation for lesser prairie-chickens among landscapes of varying anthropogenic influenceSullins, Daniel S.; Haukos, David A.; Lautenbach, Joseph M.; Lautenbach, Jonathan D.; Robinson, Samantha G.; Rice, Mindy B.; Sandercock, Brett K.; Kraft, John D.; Plumb, Reid T.; Reitz, Jonathan H.; Hutchinson, J. M. Shawn; Hagen, Christian A. (2019-10)For millennia grasslands have provided a myriad of ecosystem services and have been coupled with human resource use. The loss of 46% of grasslands worldwide necessitates the need for conservation that is spatially, temporally, and socioeconomically strategic. In the Southern Great Plains of the United States, conversion of native grasslands to cropland, woody encroachment, and establishment of vertical anthropogenic features have made large intact grasslands rare for lesser prairie-chickens (Tympanuchus pallidicinctus). However, it remains unclear how the spatial distribution of grasslands and anthropogenic features constrain populations and influence conservation. We estimated the distribution of lesser prairie-chickens using data from individuals marked with GPS transmitters in Kansas and Colorado, USA, and empirically derived relationships with anthropogenic structure densities and grassland composition. Our model suggested decreased probability of use in 2-km radius (12.6 km(2)) landscapes that had greater than two vertical features, two oil wells, 8 km of county roads, and 0.15 km of major roads or transmission lines. Predicted probability of use was greatest in 5-km radius landscapes that were 77% grassland. Based on our model predictions, similar to 10% of the current expected lesser prairie-chicken distribution was available as habitat. We used our estimated species distribution to provide spatially explicit prescriptions for CRP enrollment and tree removal in locations most likely to benefit lesser prairie-chickens. Spatially incentivized CRP sign up has the potential to provide 4189 km2 of additional habitat and strategic application of tree removal has the potential to restore 1154 km(2). Tree removal and CRP enrollment are conservation tools that can align with landowner goals and are much more likely to be effective on privately owned working lands.