Browsing by Author "Reneau, Raymond B."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- Agricultural use of sewage sludge : a literature reviewKelley, W. D.; Martens, David C.; Reneau, Raymond B.; Simpson, Thomas W. (Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1984-12)Stricter regulations on discharge of sewage into waters, higher costs of alternate disposal procedures, and higher prices of chemical fertilizers have increased interest in the use of sewage sludge in crop production. This review addresses the benefits and risks of agricultural use of sewage sludge. Topics evaluated in this study are the biological, chemical, and physical aspects of sewage sludge relating to trace elements, pathogens, nitrogen, and phosphorus and also the economic aspects of land application of sewage sludge. For each topic, additional research needs are identified.
- Availability and distribution of heavy metals, nitrogen, and phosphorus from sewage sludge in the plant-soil-water continuumRappaport, Bruce D.; Scott, James D.; Martens, David C.; Reneau, Raymond B.; Simpson, Thomas W. (Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1987)Research was conducted during 1984 and 1985 to determine Cd, Cu, N, Ni, P, and Zn availabilities to barley (Hordeum vulgare L.) and corn (lea mays L.) grown on four sludge-amended soils. Field studies were conducted on Acredale silt loam (Typic Ochraqualf), Bojac loamy sand (Typic Hapludult), Davidson clay loam (Rhodie Paleudult), and Groseclose silt loam (Typic Hapludult). An aerobically digested sewage sludge, which was dewatered for approximately 2 years on sandbeds, was obtained from a sewage treatment plant with major industrial inputs. In the spring of 1984, this sludge was applied at rates of 0, 42, and 84 dry Mg ha- 1 to the poorly drained Acredale soil and at rates of 0, 42, 84, 126, 168, and 210 dry Mg ha - 1 to the well-drained Bojac, Davidson, and Groseclose soils. The 210 dry Mg ha-1 sludge rate supplied 4.5 kg Cd, 750 kg Cu, 3350 kg N, 43 kg Ni, 6900 kg P, and 600 kg Zn ha - 1. A 14-day anaerobic N incubation study indicated that mineralization of sludge organic N varied from 9.2% at the 42 Mg ha - 1 sludge rate to 4.2% at the 210 Mg ha - 1 rate. Th is relatively low percentage of N mineralized from the sludge may reflect the inhibitory effects of the high sludge metal levels on N transformations and the changes in sludge composition during long-term dewatering on sandbeds. Sludge application increased crop yields, except where the amounts of N mineralized from the sludge was inadequate to supply the N requirement of the crop. Crop yields were not decreased by either metal phytotoxicity or P deficiency on the four sludge-amended soils. On the three well-drained soils, Cu and Zn phytotoxicity did not occur where these metals were applied in excess of US EPA guidelines of 280 kg Cu and 560 kg Zn ha- 1. Although there were increases in Cd, Cu, Ni, and Zn in plants grown on the sludge-amended soils, the metal concentrations were within the ranges of those reported for nonsludged soils. Levels of DTPA-extractable metals in the Ap horizon of the soils provided a good indication of the amounts of metals in the soils from sludge application. Relatively low correlations occurred between DTPA-extractable Cd, Cu, Ni, and Zn and the respective metal concentrations in plant tissue. These low correlations were attributed to the small increases in metal concentrations in tissue from metals supplied by sludge application. The DTPA-extractable Cd, Cu, Ni, and Zn concentrations in soils sampled from various depths indicated no downward movement of these metals in the sludge-amended soils, except for virtually negligible downward movement of Cu in the Groseclose soil. Dilute double-acid extractable P in these samples indicated a small amount of P movement in only the sludge-amended Bojac and Davidson soils. The limited N mineralization of the sludge under study substantially reduced the potential for NQ3- contamination of groundwater.
- Denitrification in onsite wastewater treatment and disposal systemsDegen, Marcia B.; Reneau, Raymond B.; Hagedorn, Charles III; Martens, David C. (Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1991-11)The effects of effluent type, effluent loading rate, dosing interval, and temperature on denitrification in onsite wastewater treatment and disposal systems (OSWTDSs) were evaluated in this study. The variables were soil horizon, effluent type, effluent loading rate, dosing interval, and temperature. Surface and subsurface soil cores were collected from a Groseclose silt loam soil (clayey, mixed, mesic Typic Hapludult) and subjected to the following treatments: aerobic and anaerobic effluent, loading rates of 0.5, 1.0, and 1.5 times the Virginia Department of Health (VDH)-recommended levels, 24-hour and 48-hour dosing rates, and summer and winter temperatures. The effects of the treatments on denitrification were evaluated based on analyses of leachate from the cores, soil chemical analyses, and microcosm studies to estimate actual denitrification activity. From the study, a model was developed that predicted the mean nitrous oxide (N20) production for each combination of the experimental treatments. The results of the study and the model indicate that denitrification can be enhanced in OSWTDSs by the application of anaerobic effluent at the VDH-recommended effluent loading rate to surface soil horizons using a 48-hour dosing interval. A field study was conducted on a Lowell silt loam soil (fine, mixed, mesic Typic Hapludalf). Denitrification was measured at this site using acetylene blocking, and the results compared to those predicted by the denitrification model developed from the laboratory data. The field measurements of denitrification based on N20 concentration in the soil atmosphere were almost three orders of magnitude higher than that predicted by the model.
- Development and evaluation of a colorimetric coliphage assay detection systemIjzerman, M. Marian; Hagedorn, Charles III; Reneau, Raymond B. (Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1994-03)A colorimetric coliphage assay detection system (CCADS), composed of a liquid colorimetric presence-absence (LCPA) method and a colorimetric agar-based (CAB) method, was developed to overcome the limitations imposed by the Standard Methods for the Examination of Water and Wastewater agar-based coli phage method (APHA method). Both CCADS methods are based on the induction of p-galactosidase in Escherichia coli and the release of the enzyme through a lytic cell infection. The released enzyme then cleaves a chromogenic substrate, which produces a colored reaction product. The CCADS was evaluated against the APHA method under laboratory conditions using a common sewage coliphage strain as a model (American Type Culture Collection-13706-B2), and under field conditions using water samples collected from four different sources. During thelaboratory evaluation, both the LCPA and CAB methods were found to be superior to the APHA method in coliphage detection because: 1) the LCPA and CAB methods were easier to read and interpret than the APHA method, 2) the LCPA and CAB methods were not subject to false positive results, 3) the ·LCPA method theoretically detected fewer coliphage particles than the APHA method, and 4) the CAB method detected roughly twice the number of coliphage particles detected with the APHA method. During the field evaluation, the results indicated: 1) the LCPA method was as reliable as either the CAB or APHA method in coliphage detection; 2) the LCPA and CAB methods were easier to read and interpret than the APHA method; 3) neither the LCPA method nor the CAB method were subject to false positive results; 4) the CAB method detected more coliphages than the APHA method under conditions of high fecal pollution, but both methods performed equally well in coliphage detection under conditions of low fecal contamination; and 5) the LCPA and CAB methods were equally as sensitive in coliphage detection as the APHA method. Finally, the coliphage group proved to be a useful indicator of fecal pollution in nonpotable water supplies exhibiting a high degree of fecal pollution, whereas they were not shown to be useful indicators in potable water supplies exhibiting low levels of fecal contamination. The lack of coliphage detection sensitivity under conditions of low fecal contamination does not appear to be method-limited, but the result of inefficiencies in processing environmental samples using the concentration methods currently available.
- Effects of tillage and nitrogen fertilization on nitrogen losses from soils used for corn productionMenelik, G.; Reneau, Raymond B.; Martens, David C.; Simpson, Thomas W.; Hawkins, George W. (Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1990-12)Research was conducted in soils of the Chesapeake Bay area to determine the effects of tillage practice and nitrogen (N) fertilizer application rates on N leaching from corn fields. Three well known computer models (NTRM, CERES-Maize, and VT-MAIZE) were tested to determine their ability to predict the distribution of N in (a) soil and crop, (b) the components of the N cycle, and (c) corn yields. To accomplish the above objectives, two field sites were selected on agronomically important soils for either a corn (Zea mays L.)-wheat (Triticum aestivum L.)-soybean (Glycine max [L.] Merr.) or a continuouscorn rotation. The corn-wheat-soybean rotation was located on a Suffolk sandy loam soil (coarse loamy, siliceous, thermic Typic Hapludult) in the immediate Chesapeake Bay drainage basin. The continuous-corn rotation was located on a Groseclose silt loam soil (clayey, mixed, mesic Typic Hapludult) typical of finer-textured soils located in the upper reaches of tributaries that drain into the Chesapeake Bay. Management practices evaluated included tillage system and rate, source, and time of N application. Specifically, we looked at conventional vs. no-till; inorganic N vs. sewage sludge; preplant vs. split application of N; and a variety of N application rates. The N treatments for corn were 0, 75, 150, and 225 kg N ha-1 applied preplant; 150 kg N ha-1 applied 4 weeks after emergence; and 150 kg of mineralizable N ha-1 from anaerobically digested and either lime- or polymer-conditioned sewage sludge. The N treatments for wheat were 20 kg N ha-1 applied in the fall and 30, 60, or 90 kg N ha-1 applied in the spring; 60 kg N ha-1 split application; and 80 kg of mineralizable N ha-1 applied in the fall from either lime- or polymer-conditioned sewage sludge. In the Groseclose soil, there was an increase in total yield and N uptake when sewage sludge was applied compared to the split and preplant application of inorganic N. There was no difference between polymer-or lime-conditioned sewage sludge application. Also, there were no differences between preplant and split application of N. Where no-till was used, there was an increase in both yield and N uptake compared with conventional till. In the Suffolk soil, tillage management did not influence yield or N uptake where time and source of N application were studied. This lack of response on the Suffolk soil is attributed to severe moisture deficits that were present during the growing season on this coarse-textured soil. Nitrogen losses from the soil profile were directly related to the quantity of N remaining in the upper 1 m of the soil profile after the crop was harvested. Larger quantities of N were lost from the Groseclose soil where conventional till was employed during the first year of the study. This was attributed to enhanced mineralization where no-till was converted to conventional till and to lower yields and lower N recovery with conventional till. Losses of N tended to be higher from the conventional till plots because of the larger quantities remaining at the end of the growing season. It should be noted that the years during which these xvii studies were conducted were extremely dry, and the in the Groseclose soil where no-till management was employed resulted in increased yield and increased N recovery. This study also emphasizes the need for better methods for making N recommendations for crop production. The model performances varied from year to year and from one tillage practice to another. Because they were written for average soil and climatic conditions, they did not make satisfactory predictions in many instances. Such models require adjustment to reflect the moisture stress conditions that often prevail in this region for corn production.
- Evaluation of the performance of five aerated package treatment systemsKellam, J. Lee; Boardman, Gregory D.; Hagedorn, Charles III; Reneau, Raymond B. (Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1993)
- On-Site Sewage Treatment AlternativesGalbraith, John M.; Zipper, Carl E.; Reneau, Raymond B. (Virginia Cooperative Extension, 2015-09-21)Discusses several alternative methods for treatment of wastewater, and their effectiveness.
- On-Site Sewage Treatment AlternativesGalbraith, John M.; Zipper, Carl E.; Reneau, Raymond B. (Virginia Cooperative Extension, 2018-03-27)Discusses several alternative methods for treatment of wastewater, and their effectiveness.
- On-Site Sewage Treatment AlternativesZipper, Carl E.; Reneau, Raymond B.; Jantrania, Anish R. (Virginia Cooperative Extension, 2009-07-01)The purpose of this publication is to describe on-site technologies for treating domestic sewage where conventional means (public sewer or septic tank with drainfield) are not available.
- On-site treatment and disposal of residential wastewaters on mined landsZipper, Carl E.; Reneau, Raymond B.; Saluta, Michael A. (Virginia Cooperative Extension, 2005)
- On-site Treatment and Disposal of Residential Wastewaters on Mined LandsZipper, Carl E.; Reneau, Raymond B.; Saluta, Michael A. (Virginia Cooperative Extension, 2012-09-03)This publication is written for homeowners, homebuilders, land developers, public officials, and others who may have an interest in building residential housing or other types of development on mined lands that are not accessible to public sewers. It also contains guidelines and recommendations for establishing and operating alternative on-site wastewater systems OWS on reclaimed coal mines.