Browsing by Author "Ribeiro, Alvaro John"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- An examination of ionospheric plasma irregularities detected by the mid-latitude SuperDARN radarsRibeiro, Alvaro John (Virginia Tech, 2011-04-08)The data from the new mid-latitude radars of the Super Dual Auroral Radar Network (SuperDARN) provide new types of challenges and observations. We have developed a method for identifying periods of ionospheric backscatter that increase the number of data and reduce the average velocity in agreement with previous incoherent scatter radar (ISR) studies. Analysis of the data identified by this method clearly shows that different types of ionospheric irregularities are being observed in the mid-latitude region. One type of irregularity is clearly subauroral and equatorward of the plasmapause. Fitting a convection pattern to the Doppler velocities associated with subauroral ionospheric scatter reveals some interesting features. Subauroral convection is shown to be westward thought most of the night, with an eastward turning near dawn. The rotation factor of the ionosphere relative to the rotation of the earth is shown to be ~0.95, which is in good agreement with previous studies of plasmaspheric corotation.
- SuperDARN Data Simulation, Processing, Access, and Use in Analysis of Mid-latitude ConvectionRibeiro, Alvaro John (Virginia Tech, 2013-12-09)Super Dual Auroral Radar Network (SuperDARN) data is a powerful tool for space science research. Traditionally this data has been processed using a routine with known limitations. A large issue preventing the development and implementation of new processing algorithms was the lack of a realistic test dataset. We have implemented a robust data simulator based on physical principles which is presented in Chapter 2. The simulator is able to generate SuperDARN data with realistic statistical fluctuations and known input Doppler velocity and spectral width. Using the simulator to generate a test data set, we was able to test new algorithms for processing SuperDARN data. The algorithms which were tested included the traditional method (FITACF), a new approach using the bisection method (FITEX2), and the Levenberg-Marquardt algorithm for nonlinear curve fitting (LMFIT). FITACF is found to have problems when processing data with high (> 1~km/s) Doppler velocity, and is outperformed by both FITEX2 and LMFIT. LMFIT is found to produce slightly better fitting results than FITEX2, and is thus my recommendation to be the standard SuperDARN data fitting algorithm. The construction of the new midlatitude SuperDARN chain has revealed that nighttime, quiet-time plasma irregularities with low Doppler velocity and spectral width are a very common (> 50% of nights) occurrence. Following on previous work, we have conducted a study of nighttime midlatitude convection using SuperDARN data. First, the data are processed into convection patterns, and the results are presented. The drifts are mainly zonal and westward throughout the night. The plasma drifts also display significant seasonal variability. Additionally, a large latitudinal gradient is observed in the zonal velocity during the winter months. This is attributed to processes in the conjugate hemisphere, and possible causes are discussed. During my graduate studies, we have been part of the development of a software package for enabling and accelerating space science research known as DaViTpy. This software package is completely free and open source. It allows access to several different space science datasets through a single simple interface, without having to write any code for reading data files. It also incorporates several space science models in a single install. The software package represents a paradigm shift in the space science community, and is presented in Appendix A.