Browsing by Author "Roberts, James H."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Assessing impacts of the Roanoke River Flood Reduction Project on the endangered Roanoke logperch (Percina rex): Summary of Construction-Phase MonitoringRoberts, James H.; Anderson, Gregory B.; Angermeier, Paul L. (2013-08-12)The United States Army Corps of Engineers (USACE) has partnered with the City of Roanoke to carry out the Roanoke River Flood Reduction Project (RRFRP), a suite of floodplain modifications to the Roanoke River. The incidental take permit issued to USACE requires that USACE monitor populations of the federally endangered Roanoke logperch (Percina rex) prior to (Phase A), during (Phase B), and after (Phase C) construction, to estimate effects of incidental take during the course of the project. This report summarizes logperch relative abundance, suitable habitat, and water quality conditions across Phase B and compares these data to Phase A. We also conducted additional research in 2011 to assess the representativeness of permanent monitoring sites, estimate the sampling efficiency of the electrofishing methodology, and evaluate the statistical power and appropriateness of alternative impact-detection methods. Despite substantial fluctuation of the relative abundance of adult logperch over the course of monitoring, we found no statistical evidence for an impact of RRFRP construction. Thus USACE has maintained compliance with its incidental take permit during Phase B. Young-of-year logperch density, habitat availability, and water quality conditions also varied considerably over time and space during Phase B, but not in ways that could be attributable to the RRFRP. We found that permanent sites were representative of reach-wide conditions, suggesting that our findings can reasonably be extrapolated to the entire study area. The sampling efficiency of our standard electrofishing method was estimated to be low (~ 11%), yet our assessment method produced indices of abundance that were strongly correlated with true population estimates. Herein we demonstrate a new, generalized linear modeling approach to impact assessment that should provide greater insight and statistical rigor than the traditional t-test approach.
- Assessment of morphological and molecular genetic variation of freshwater mussel species belonging to the genera Fusconaia, Pleurobema, and Pleuronaia in the upper Tennessee River basinSchilling, Daniel Edward (Virginia Tech, 2015-07-07)Select freshwater mussels in the genera Fusconaia, Pleurobema, and Pleuronaia were collected primarily in the upper Tennessee River basin from 2012 to 2014 for phylogenetic and morphological assessments. Freshwater mussels in these genera are similar in appearance, hence the need for phylogenetic verification and morphological assessment. Phylogenetic analyses of the mitochondrial gene ND1 and the nuclear gene ITS1 revealed three unrecognized, phylogenetically distinct species. These species were separated from their closest congener by 2.85%, 3.17%, and 6.32% based on pairwise genetic distances of ND1. Gaps created from aligning ITS1 sequences were coded as fifth characters, which phylogenetically separated most closely related species. Analyses of ND1 agreed with previous literature on the phylogenetic distinctiveness of Pleuronaia species, with the exception of the DNA sequences of P. gibberum, which grouped outside this genus based on the analyses conducted in this study. Morphological variation was recorded for eight of the species to include quantitative and qualitative characters as well as geometric morphometric analyses. Three decision trees were created from quantitative and qualitative characters using classification and regression tree analyses. The best-performing tree used quantitative and qualitative characters describing shell-only scenarios and obtained 80.6% correct classification on terminal nodes. Canonical variates analysis on geometric morphometric shell data revealed large morphological overlap between species. Goodall's F-tests between pairs of species revealed significant differences (a=0.05) between all but one species pairs; however, examination of landmarks on shells concluded large overlap of landmarks between species pairs. Lack of morphologically distinct characters to readily identify these phylogenetically distinct species indicates large morphological overlap among these species. Biologists need to be cognizant that morphologically cryptic species may exist in systems often explored. Three dichotomous keys were created from classification trees to identify select individuals in the genera Fusconaia, Pleurobema, and Pleuronaia; two of these keys, one for shells and one for live mussels were tested by participants with varying mussel identification skills to represent novices and experts. Both keys used continuous (quantitative) and categorical variables to guide participants to identifications. Novices, who had no prior mussel identification experience, correctly identified mussels with a 50% accuracy using the shell key and with a 51% accuracy using the live key. Experts, who had at least three years of experience identifying mussels, correctly identified mussels with a 58% accuracy using the shell key and with a 68% accuracy using the live key; however one expert noted that they did not use the live key to correctly identify one mussel. Morphological overlap of variables between mussels likely resulted in failure to consistently identify mussels correctly. Important management decisions and project implementations require accurate assessment of species' localities and populations. Incorrect species identification could hinder species' recovery efforts or prevent projects that otherwise could have continued if species are misidentified. If a mussel collection is thought to be a new record or could affect a project, I recommend that molecular genetic identifications be used to verify the species identity.
- Factors Influencing Darter Dispersal Patterns in the Upper Roanoke River Watershed, VirginiaRoberts, James H. (Virginia Tech, 2003-08-26)Effective delineation and management of stream fish populations requires a thorough knowledge of dispersal patterns, because these patterns affect a number of other demographic rates such as population growth, reproduction, survival, and gene flow. Previous studies of stream fish dispersal patterns have generally established species- and stream-specific home ranges and movement rates, but have largely failed to account for the environmental variables that may cause these parameters to vary. Many fishes occupy a variety of streams across a broad spectrum of ecological conditions, and movement rates (and thus population dynamics) may respond to these environmental gradients. Furthermore, enhanced understanding of the ecological features that induce or impede dispersal will help guide future management of stream channels for population connectivity. To determine the instream features that influence the dispersal patterns of darters, I conducted a spatially intensive mark/recapture study of three darter species in the upper Roanoke River watershed. Logistic regression was used to relate observed inter-riffle movements to gradients in riffle and corridor attributes. During the first study period, habitat area loss and habitat spacing drove dispersal patterns. However, a model developed from these data transferred poorly to the second study period, in which density dependence was a more effective predictor of dispersal. Individual size did not seem to influence the probability of emigration, but did influence the distance traveled following emigration, particularly for the two more specialist species. This finding suggests a size-based dominance hierarchy for habitat selection and occupancy in darters. Predation threat had only a minor effect on the probability of traversing inhospitable corridors, but experimentally introduced structural cover significantly elevated dispersal rates through such corridors. Taken together, results of this study indicate that a complex array of ecological features interact to produce heterogeneity in dispersal rates across the stream landscape. Knowledge of these influences can be used to manage stream channels for dispersal permeability. In addition to field studies, laboratory studies were undertaken to determine the efficacy of visible implant elastomer (VIE) and injectable photonic dye (IPD) for marking darters. No previous studies have rigorously evaluated these marks in darters, and comparisons of the two technologies in any taxa are few. Results of the laboratory study indicated that VIE is preferable to IPD for marking darters, particularly when mark longevity greater than 80 days is desired. Individuals marked with VIE exhibited higher survival and mark retention rates than did individuals marked with IPD. Additionally, VIE mark retention was more consistent across body locations. Retention of both marking technologies was biased by color. My study indicates that the results of tagging efficiency studies are not applicable across taxa, and that pilot studies are necessary prior to field use of marks in previously untested species.
- A Long-Term Study of Ecological Impacts of River Channelization on the Population of an Endangered Fish: Lessons Learned for Assessment and RestorationRoberts, James H.; Anderson, Gregory B.; Angermeier, Paul L. (MDPI, 2016-06-03)Projects to assess environmental impact or restoration success in rivers focus on project-specific questions but can also provide valuable insights for future projects. Both restoration actions and impact assessments can become “adaptive” by using the knowledge gained from long-term monitoring and analysis to revise the actions, monitoring, conceptual model, or interpretation of findings so that subsequent actions or assessments are better informed. Assessments of impact or restoration success are especially challenging when the indicators of interest are imperiled species and/or the impacts being addressed are complex. From 1997 to 2015, we worked closely with two federal agencies to monitor habitat availability for and population density of Roanoke logperch (Percina rex), an endangered fish, in a 24-km-long segment of the upper Roanoke River, VA. We primarily used a Before-After-Control-Impact analytical framework to assess potential impacts of a river channelization project on the P. rex population. In this paper, we summarize how our extensive monitoring facilitated the evolution of our (a) conceptual understanding of the ecosystem and fish population dynamics; (b) choices of ecological indicators and analytical tools; and (c) conclusions regarding the magnitude, mechanisms, and significance of observed impacts. Our experience with this case study taught us important lessons about how to adaptively develop and conduct a monitoring program, which we believe are broadly applicable to assessments of environmental impact and restoration success in other rivers. In particular, we learned that (a) pre-treatment planning can enhance monitoring effectiveness, help avoid unforeseen pitfalls, and lead to more robust conclusions; (b) developing adaptable conceptual and analytical models early was crucial to organizing our knowledge, guiding our study design, and analyzing our data; (c) catchment-wide processes that we did not monitor, or initially consider, had profound implications for interpreting our findings; and (d) using multiple analytical frameworks, with varying assumptions, led to clearer interpretation of findings than the use of a single framework alone. Broader integration of these guiding principles into monitoring studies, though potentially challenging, could lead to more scientifically defensible assessments of project effects.