Browsing by Author "Romero-Alvarez, Daniel"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Distributional ecology of Andes hantavirus: a macroecological approachAstorga, Francisca; Escobar, Luis E.; Poo-Muñoz, Daniela A.; Escobar-Dodero, Joaquin; Rojas-Hucks, Sylvia; Alvarado-Rybak, Mario; Duclos, Melanie; Romero-Alvarez, Daniel; Molina-Burgos, Blanca E.; Peñafiel-Ricaurte, Alexandra; Toro, Frederick; Peña-Gómez, Francisco T.; Peterson, A. Townsend (2018-06-22)Background: Hantavirus pulmonary syndrome (HPS) is an infection endemic in Chile and Argentina, caused by Andes hantavirus (ANDV). The rodent Oligoryzomys longicaudatus is suggested as the main reservoir, although several other species of Sigmodontinae are known hosts of ANDV. Here, we explore potential ANDV transmission risk to humans in southern South America, based on eco-epidemiological associations among: six rodent host species, seropositive rodents, and human HPS cases. Methods: We used ecological niche modeling and macroecological approaches to determine potential geographic distributions and assess environmental similarity among rodents and human HPS cases. Results: Highest numbers of rodent species (five) were in Chile between 35° and 41°S latitude. Background similarity tests showed niche similarity in 14 of the 56 possible comparisons: similarity between human HPS cases and the background of all species and seropositive rodents was supported (except for Abrothrix sanborni). Of interest among the results is the likely role of O. longicaudatus, Loxodontomys micropus, Abrothrix olivaceus, and Abrothrix longipilis in HPS transmission to humans. Conclusions: Our results support a role of rodent species’ distributions as a risk factor for human HPS at coarse scales, and suggest that the role of the main reservoir (O. longicaudatus) may be supported by the broader rodent host community in some areas.
- First case of New Delhi metallo-beta-lactamase in Klebsiella pneumoniae from Ecuador: An update for South AmericaRomero-Alvarez, Daniel; Reyes, Jorge; Quezada, Viviana; Satan, Carolina; Cevallos, Nelson; Barrera, Sofia; Trueba, Gabriel; Escobar, Luis E.; Villacis, Jose E. (International Society for Infectious Diseases, 2017-12)Objectives: To describe a clinical case of Klebsiella pneumoniae harboring a New Delhi metallo-beta-lactamase (NDM) plasmid in Ecuador and to present a map of reports of NDM isolates in South America. Methods: The modified Hodge test, carbapenem inactivation method, imipenem-EDTA disk method (synergy), and Rapidec Carba NP test were used to identify antibiotic resistance mechanisms. The presence of resistance genes was explored with a conjugation assay, and molecular confirmation of NDM was performed by PCR and DNA sequencing. Plasmid characterization was conducted by PCR-based replicon typing. A literature review was performed in Google Scholar and PubMed to identify reports from South America. Results: An HIV-infected patient, who had never traveled abroad, developed a bloodstream infection caused by K. pneumoniae ST147 harboring the NDM-1 resistance gene in a plasmid from the IncA/C group. Local circulation of NDM has also been described in other South American countries, in particular in Colombia and Brazil, although published scientific records were not found for other countries. Conclusions: This report presents the first evidence of autochthonous circulation of the NDM-1 resistance gene harbored by an IncA/C plasmid isolated from a K. pneumoniae ST147 in Ecuador. Efforts should be implemented to monitor and characterize the spatial and temporal distribution of NDM in Ecuador and other countries of South America. (C) 2017 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
- Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild FelidsEscobar, Luis E.; Carver, Scott; Romero-Alvarez, Daniel; VandeWoude, Sue; Crooks, Kevin R.; Lappin, Michael R.; Craft, Meggan E. (Frontiers, 2017-10-17)Traditional epidemiological studies of disease in animal populations often focus on directly transmitted pathogens. One reason pathogens with complex lifecycles are understudied could be due to challenges associated with detection in vectors and the environment. Ecological niche modeling (ENM) is a methodological approach that overcomes some of the detection challenges often seen with vector or environmentally dependent pathogens. We test this approach using a unique dataset of two pathogens in wild felids across North America: Toxoplasma gondii and Bartonella spp. in bobcats (Lynx rufus) and puma (Puma concolor). We found three main patterns. First, T gondii showed a broader use of environmental conditions than did Bartonella spp. Also, ecological niche models, and Normalized Difference Vegetation Index satellite imagery, were useful even when applied to wide-ranging hosts. Finally, ENM results from one region could be applied to other regions, thus transferring information across different landscapes. With this research, we detail the uncertainty of epidemiological risk models across novel environments, thereby advancing tools available for epidemiological decision-making. We propose that ENM could be a valuable tool for enabling understanding of transmission risk, contributing to more focused prevention and control options for infectious diseases.
- Transmission risk of Oropouche fever across the AmericasRomero-Alvarez, Daniel; Escobar, Luis E.; Auguste, A. Jonathan; Del Valle, Sara Y.; Manore, Carrie A. (2023-05-06)Background Vector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance. Methods To better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas. Results Models based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks. Conclusions Hotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection.