Browsing by Author "Rosa, Gullherme J. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Including Phenotypic Causal Networks in Genome-Wide Association Studies Using Mixed Effects Structural Equation ModelsMomen, Mehdi; Mehrgardi, Ahmad Ayatollahi; Roudbar, Mahmoud Amiri; Kranis, Andreas; Pinto, Renan Mercuri; Valente, Bruno D.; Morota, Gota; Rosa, Gullherme J. M.; Gianola, Daniel (Frontiers, 2018-10-09)Network based statistical models accounting for putative causal relationships among multiple phenotypes can be used to infer single-nucleotide polymorphism (SNP) effect which transmitting through a given causal path in genome-wide association studies (GWAS). In GWAS with multiple phenotypes, reconstructing underlying causal structures among traits and SNPs using a single statistical framework is essential for understanding the entirety of genotype-phenotype maps. A structural equation model (SEM) can be used for such purposes. We applied SEM to GWAS (SEM-GWAS) in chickens, taking into account putative causal relationships among breast meat (BM), body weight (Btu), hen-house production (HHP), and SNPs. We assessed the performance of SEM-GWAS by comparing the model results with those obtained from traditional multi-trait association analyses (MTM-GWAS). Three different putative causal path diagrams were inferred from highest posterior density (HPD) intervals of 0.75, 0.85, and 0.95 using the inductive causation algorithm. A positive path coefficient was estimated for BM -> BW, and negative values were obtained for BM -> HHP and BW -> HHP in all implemented scenarios. Further, the application of SEM-GWAS enabled the decomposition of SNP effects into direct, indirect, and total effects, identifying whether a SNP effect is acting directly or indirectly on a given trait. In contrast, MTM-GWAS only captured overall genetic effects on traits, which is equivalent to combining the direct and indirect SNP effects from SEM-GWAS. Although MTM-GWAS and SEM-GWAS use the similar probabilistic models, we provide evidence that SEM-GWAS captures complex relationships in terms of causal meaning and mediation and delivers a more comprehensive understanding of SNP effects compared to MTM-GWAS. Our results showed that SEM-GWAS provides important insight regarding the mechanism by which identified SNPs control traits by partitioning them into direct, indirect, and total SNP effects.
- Structural equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattlePegolo, Sara; Momen, Mehdi; Morota, Gota; Rosa, Gullherme J. M.; Gianola, Daniel; Bittante, Giovanni; Cecchinato, Alessio (Nature Publishing Group, 2020-05-08)Mastitis is one of the most prevalent and costly diseases in dairy cattle. It results in changes in milk composition and quality which are indicators of udder inflammation in absence of clinical signs. We applied structural equation modeling (SEM) - GWAS aiming to explore interrelated dependency relationships among phenotypes related to udder health, including milk yield (MY), somatic cell score (SCS), lactose (%, LACT), pH and non-casein N (NCN, % of total milk N), in a cohort of 1,158 Brown Swiss cows. The phenotypic network inferred via the Hill-Climbing algorithm was used to estimate SEM parameters. Integration of multi-trait models-GWAS and SEM-GWAS identified six significant SNPs for SCS, and quantified the contribution of MY and LACT acting as mediator traits to total SNP effects. Functional analyses revealed that overrepresented pathways were often shared among traits and were consistent with biological knowledge (e.g., membrane transport activity for pH and MY or Wnt signaling for SCS and NCN). In summary, SEM-GWAS offered new insights on the relationships among udder health phenotypes and on the path of SNP effects, providing useful information for genetic improvement and management strategies in dairy cattle.