Browsing by Author "Rosenquist, Shawn E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Development of the Urban Wetland Filter for Managing Phosphorus in StormwaterRosenquist, Shawn E. (Virginia Tech, 2010-03-19)Degradation of surface water quality by excess nutrients in stormwater is a substantial environmental and economic problem in the U.S. Phosphorus (P) is often the limiting nutrient for harmful algal blooms and the best target to prevent degradation. Natural treatment strategies such as constructed wetlands (CW) demonstrate effective and economical P management but obstacles exist to implementation. Biological P removal has large land requirements that limit the use of best management practices (BMP) in high land-value areas. Various BMP also utilize sorption processes (SP) for P removal but variations in performance and finite sorption capacity limit SP as a viable long-term removal strategy. However, by understanding variability and making sorption capacity renewable, SP could provide, with shorter retention times, a space-efficient, long-term removal strategy. This multi-study research program developed the urban wetland filter (UWF), a concept intended to overcome the unique limitations of high land-value areas to natural treatment strategies and provide a low-cost, easily implemented BMP to meet P management goals while harvesting sequestered P for use as a fertilizer. Experimental factors included substrate and influent properties pertinent to understanding performance variation and optimizing microbial iron (Fe) reduction for rejuvenation of sorption capacity. Regarding performance, modeling identified major sources of variability including, by order of importance, magnitude of a solution/substrate concentration gradient, length of the "antecedent dry period" between loadings, and pH. Field-scale results confirmed this multifactor dependence of P-removal while also supporting the inclusion of cast-iron filings in substrate to improve P removal. Regarding rejuvenation, results indicated that microbial Fe reduction is capable of releasing previously sequestered P from substrates. A sufficient carbon source was necessary, but microbial inoculation was not necessary to facilitate Fe reduction, which released most of the previously sequestered P, albeit more slowly than P sequestration. Field-scale results indicated that Fe reduction might occur faster under field conditions, possibly due to humic acids, and that inclusion of cast-iron filings enabled additional P removal after rejuvenation by providing a conservative source of Fe for the creation of new sorption sites; however, cast-iron filings may also limit the release of P during rejuvenation.
- Facilitated iron reduction as a possible means of rejuvenating phosphorus removal performance of filtration substratesRosenquist, Shawn E.; Levy, C. L.; Sell, S. T.; Hession, W. Cully; Eick, Matthew J.; Vaughan, David H. (American Society of Agricultural and Biological Engineers, 2011)In order to mitigate nutrient pollution in surface runoff more sustainably, the finite capacity for phosphorus (P) sequestration in best management practices (BMP) that rely heavily on sorption processes must be addressed. These BMP include sand filters, bioretention cells, and several types of constructed wetland. This study investigated facilitated microbial reduction of iron-based filtration substrates to promote controlled release of P previously sequestered by the BMP, P harvest for recycling, and rejuvenation of the substrate sorption capacity. Total dissolved P was well correlated with total dissolved iron during the reduction process, indicating that microbial iron reduction was capable of releasing previously sequestered P from substrates. Furthermore, results indicated that a sufficient carbon source was necessary but addition of a microbial culture was not necessary to facilitate iron reduction. While a large percentage of the previously sequestered P was removed, the process was much slower than initial sequestration of P by adsorption, and further research is needed to promote a more rapid release of P in order to optimize the rejuvenation process for field application.
- Variability in adsorptive phosphorus removal by structural stormwater best management practicesRosenquist, Shawn E.; Hession, W. Cully; Eick, Matthew J.; Vaughan, David H. (Elsevier, 2009-12-09)Various best management practices (BMPs) utilizing sorption processes (SP) have demonstrated effectiveness for phosphorus (P) management in stormwater. However, the widespread use of these BMPs in urban areas has been limited by large land requirements and limited P removal capacity. Central to this study is the development of the urban wetland filter (UWF), a concept intended to overcome these limitations and provide a low-cost, easily implemented BMP that can meet urban P-management goals. Performance variation along with finite sorption capacity has limited the reliability of SP as a primary removal strategy. However, if variability were better understood and capacity made renewable, sorption of P to substrates could provide the option of a more rapid and (with less required retention time) more space-efficient sustainable removal strategy than biological uptake. The goal of this study was to identify and model major sources of variability in P removal by sorption, enabling better prediction and optimization of sorption performance and ultimately the development of a small-footprint stormwater BMP with efficient P removal ability. Experiments were conducted in bench-scale reactors with an iron-oxide sand substrate. Results included a physical-process model developed by considering the thermodynamic and kinetic properties of SP. Significant sources of variability included, by order of importance, magnitude of a solution/substrate concentration gradient, length of the “antecedent dry period” between loadings, and pH. Most importantly, results indicate the critical importance of a thermodynamic gradient between solution P and previously adsorbed P to achieve continued removal.