Browsing by Author "Rowland, Kaylee"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Genetic analysis of production, physiological, and egg quality traits in heat-challenged commercial white egg-laying hens using 600k SNP array dataRowland, Kaylee; Ashwell, Christopher M.; Persia, Michael E.; Rothschild, Max F.; Schmidt, Carl J.; Lamont, Susan J. (2019-06-25)Background Heat stress negatively affects the welfare and production of chickens. High ambient temperature is considered one of the most ubiquitous abiotic environmental challenges to laying hens around the world. In this study, we recorded several production traits, feed intake, body weight, digestibility, and egg quality of 400 commercial white egg-laying hens before and during a 4-week heat treatment. For the phenotypes that had estimated heritabilities (using 600k SNP chip data) higher than 0, SNP associations were tested using the same 600k genotype data. Results Seventeen phenotypes had heritability estimates higher than 0, including measurements at various time points for feed intake, feed efficiency, body weight, albumen weight, egg quality expressed in Haugh units, egg mass, and also for change in egg mass from prior to heat exposure to various time points during the 4-week heat treatment. Quantitative trait loci (QTL) were identified for 10 of these 17 phenotypes. Some of the phenotypes shared QTL including Haugh units before heat exposure and after 4 weeks of heat treatment. Conclusions Estimated heritabilities differed from 0 for 17 traits, which indicates that they are under genetic control and that there is potential for improving these traits through selective breeding. The association of different QTL with the same phenotypes before heat exposure and during heat treatment indicates that genomic control of traits under heat stress is distinct from that under thermoneutral conditions. This study contributes to the knowledge on the genomic control of response to heat stress in laying hens.
- Venous blood gas and chemistry components are moderately heritable in commercial white egg-laying hens under acute or chronic heat exposureRowland, Kaylee; Persia, Michael E.; Rothschild, Max F.; Schmidt, Carl J.; Lamont, Susan J. (Oxford University Press, 2019-09-01)Heat stress has a large negative impact on poultry around the world in both intensive and small-scale production systems. Better understanding of genetic factors contributing to response to high ambient temperatures would provide a basis to develop strategies for alleviating negative impacts of heat on poultry production. The objective of this work was to characterize the genetic control (heritability estimate and quantitative trait loci (QTL)) of blood chemistry components before and after exposure to acute and chronic high ambient temperature in a commercial egg laying line Hy-Line W-36 female parent line mature hens were exposed to 4 wk of daily cyclic heat exposure. Blood was collected pre-heat, on the first day of heat, and 2 and 4 wk post heat initiation and analyzed immediately using an i-STAT® hand-held blood analyzer. Thirteen blood components were quantified at the 4 time points: pH, pCO2, pO2, HCO3, TCO2, sO2, iCa, Na, K, base excess, glucose, “hematocrit” (estimated from blood electrical conductivity, BEC), and “hemoglobin” (calculated from BEC). Heritabilities were estimated using genomic relationship information obtained from 600k SNP chip data. All 13 parameters exhibited a significant change after 5 h of heat exposure and most did not return to pre-heat levels throughout the duration of the study. Eight parameters (base excess, glucose, hemoglobin, HCO3, hematocrit, K, pCO2, TCO2) had heritability estimates differing from zero at one or more time points (0.21 to 0.45). The traits with significant heritability would be good candidates for use as biomarkers in a selection program if they are correlated with traits of economic importance that are more difficult to measure. QTL were identified for nine of the traits at one or more time point. These nine traits, however, did not have significant heritability estimates suggesting that while some QTL have been identified their effects are generally small.