Browsing by Author "Ruddell, Benjamin L."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Convergence of microclimate in residential landscapes across diverse cities in the United StatesHall, Sharon J.; Learned, Jennifer; Ruddell, Benjamin L.; Larson, K. L.; Cavender-Bares, Jeannine; Bettez, Neil; Groffman, Peter M.; Grove, J. Morgan; Heffernan, James B.; Hobbie, Sarah E.; Morse, Jennifer L.; Neill, Christopher; Nelson, Kristen C.; O'Neil-Dunne, Jarlath P.M.; Ogden, Laura A.; Pataki, Diane E.; Pearse, William D.; Polsky, Colin; Chowdhury, Rinku Roy; Steele, Meredith K.; Trammell, Tara L. E. (2016-01)The urban heat island (UHI) is a well-documented pattern of warming in cities relative to rural areas. Most UHI research utilizes remote sensing methods at large scales, or climate sensors in single cities surrounded by standardized land cover. Relatively few studies have explored continental-scale climatic patterns within common urban microenvironments such as residential landscapes that may affect human comfort. We tested the urban homogenization hypothesis which states that structure and function in cities exhibit ecological "sameness" across diverse regions relative to the native ecosystems they replaced. We deployed portable micrometeorological sensors to compare air temperature and humidity in residential yards and native landscapes across six U.S. cities that span a range of climates (Phoenix, AZ; Los Angeles, CA; Minneapolis-St. Paul, MN; Boston, MA; Baltimore, MD; and Miami, FL). Microclimate in residential ecosystems was more similar among cities than among native ecosystems, particularly during the calm morning hours. Maximum regional actual evapotranspiration (AET) was related to the morning residential microclimate effect. Residential yards in cities with maximum AET < 50-65 cm/year (Phoenix and Los Angeles) were generally cooler and more humid than nearby native shrublands during summer mornings, while yards in cities above this threshold were generally warmer (Baltimore and Miami) and drier (Miami) than native forests. On average, temperature and absolute humidity were similar to 6 % less variable among residential ecosystems than among native ecosystems from diverse regions. These data suggest that common residential land cover and structural characteristics lead to microclimatic convergence across diverse regions at the continental scale.
- Homogenization of plant diversity, composition, and structure in North American urban yardsPearse, William D.; Cavender-Bares, Jeannine; Hobbie, Sarah E.; Avolio, Meghan L.; Bettez, Neil; Chowdhury, Rinku Roy; Darling, Lindsay E.; Groffman, Peter M.; Grove, J. Morgan; Hall, Sharon J.; Heffernan, James B.; Learned, Jennifer; Neill, Christopher; Nelson, Kristen C.; Pataki, Diane E.; Ruddell, Benjamin L.; Steele, Meredith K.; Trammell, Tara L. E. (Ecological Society of America, 2018-02)Urban ecosystems are widely hypothesized to be more ecologically homogeneous than natural ecosystems. We argue that urban plant communities assemble from a complex mix of horticultural and regional species pools, and evaluate the homogenization hypothesis by comparing cultivated and spontaneously occurring urban vegetation to natural area vegetation across seven major U.S. cities. There was limited support for homogenization of urban diversity, as the cultivated and spontaneous yard flora had greater numbers of species than natural areas, and cultivated phylogenetic diversity was also greater. However, urban yards showed evidence of homogenization of composition and structure. Yards were compositionally more similar across regions than were natural areas, and tree density was less variable in yards than in comparable natural areas. This homogenization of biodiversity likely reflects similar horticultural source pools, homeowner preferences, and management practices across U.S. cities.
- Interbasin water transfers in the United States and CanadaSiddik, Md. Abu Bakar; Dickson, Kerim E.; Rising, James; Ruddell, Benjamin L.; Marston, Landon T. (Nature Portfolio, 2023-01-13)Interbasin water transfers (IBTs) can have a significant impact on the environment, water availability, and economies within the basins importing and exporting water, as well as basins downstream of these water transfers. The lack of comprehensive data identifying and describing IBTs inhibits understanding of the role IBTs play in supplying water for society, as well as their collective hydrologic impact. We develop three connected datasets inventorying IBTs in the United States and Canada, including their features, geospatial details, and water transfer volumes. We surveyed the academic and gray literature, as well as local, state, and federal water agencies, to collect, process, and verify IBTs in Canada and the United States. Our comprehensive IBT datasets represent all known transfers of untreated water that cross subregion (US) or subdrainage area (CA) boundaries, characterizing a total of 641 IBT projects. The infrastructure-level data made available by these data products can be used to close water budgets, connect water supplies to water use, and better represent human impacts within hydrologic and ecosystem models.
- New water accounting reveals why the Colorado River no longer reaches the seaRichter, Brian D.; Lamsal, Gambhir; Marston, Landon T.; Dhakal, Sameer; Sangha, Laljeet Singh; Rushforth, Richard R.; Wei, Dongyang; Ruddell, Benjamin L.; Davis, Kyle Frankel; Hernandez-Cruz, Astrid; Sandoval-Solis, Samuel; Schmidt, John C. (Springer Nature, 2024-03-28)Persistent overuse of water supplies from the Colorado River during recent decades has substantially depleted large storage reservoirs and triggered mandatory cutbacks in water use. The river holds critical importance to more than 40 million people and more than two million hectares of cropland. Therefore, a full accounting of where the river’s water goes en route to its delta is necessary. Detailed knowledge of how and where the river’s water is used can aid design of strategies and plans for bringing water use into balance with available supplies. Here we apply authoritative primary data sources and modeled crop and riparian/wetland evapotranspiration estimates to compile a water budget based on average consumptive water use during 2000–2019. Overall water consumption includes both direct human uses in the municipal, commercial, industrial, and agricultural sectors, as well as indirect water losses to reservoir evaporation and water consumed through riparian/wetland evapotranspiration. Irrigated agriculture is responsible for 74% of direct human uses and 52% of overall water consumption. Water consumed for agriculture amounts to three times all other direct uses combined. Cattle feed crops including alfalfa and other grass hays account for 46% of all direct water consumption.
- Reducing water scarcity by improving water productivity in the United StatesMarston, Landon T.; Lamsal, Gambhir; Ancona, Zachary H.; Caldwell, Peter; Richter, Brian D.; Ruddell, Benjamin L.; Rushforth, Richard R.; Davis, Kyle Frankel (2020-09)Nearly one-sixth of U.S. river basins are unable to consistently meet societal water demands while also providing sufficient water for the environment. Water scarcity is expected to intensify and spread as populations increase, new water demands emerge, and climate changes. Improving water productivity by meeting realistic benchmarks for all water users could allow U.S. communities to expand economic activity and improve environmental flows. Here we utilize a spatially detailed database of water productivity to set realistic benchmarks for over 400 industries and products. We assess unrealized water savings achievable by each industry in each river basin within the conterminous U.S. by bringing all water users up to industry- and region-specific water productivity benchmarks. Some of the most water stressed areas throughout the U.S. West and South have the greatest potential for water savings, with around half of these water savings obtained by improving water productivity in the production of corn, cotton, and alfalfa. By incorporating benchmark-meeting water savings within a national hydrological model (WaSSI), we demonstrate that depletion of river flows across Western U.S. regions can be reduced on average by 6.2-23.2%, without reducing economic production. Lastly, we employ an environmentally extended input-output model to identify the U.S. industries and locations that can make the biggest impact by working with their suppliers to reduce water use 'upstream' in their supply chain. The agriculture and manufacturing sectors have the largest indirect water footprint due to their reliance on water-intensive inputs but these sectors also show the greatest capacity to reduce water consumption throughout their supply chains.
- Water-Use Data in the United States: Challenges and Future DirectionsMarston, Landon T.; Abdallah, Adel M.; Bagstad, Kenneth J.; Dickson, Kerim; Glynn, Pierre; Larsen, Sara G.; Melton, Forrest S.; Onda, Kyle; Painter, Jaime A.; Prairie, James; Ruddell, Benjamin L.; Rushforth, Richard R.; Senay, Gabriel B.; Shaffer, Kimberly (Wiley, 2022-05-10)In the United States, greater attention has been given to developing water supplies and quantifying available waters than determining who uses water, how much they withdraw and consume, and how and where water use occurs. As water supplies are stressed due to an increasingly variable climate, changing land-use, and growing water needs, greater consideration of the demand side of the water balance equation is essential. Data about the spatial and temporal aspects of water use for different purposes are now critical to long-term water supply planning and resource management. We detail the current state of water-use data, the major stakeholders involved in their collection and applications, and the challenges in obtaining high-quality nationally consistent data applicable to a range of scales and purposes. Opportunities to improve access, use, and sharing of water-use data are outlined. We cast a vision for a world-class national water-use data product that is accessible, timely, and spatially detailed. Our vision will leverage the strengths of existing local, state, and federal agencies to facilitate rapid and informed decision-making, modeling, and science for water resources. To inform future decision-making regarding water supplies and uses, we must coordinate efforts to substantially improve our capacity to collect, model, and disseminate water-use data.