Browsing by Author "Ruger, Lauren N."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Characterizing the Ablative Effects of Histotripsy for Osteosarcoma: In Vivo Study in DogsRuger, Lauren N.; Hay, Alayna N.; Vickers, Elliana R.; Coutermarsh-Ott, Sheryl; Gannon, Jessica M.; Covell, Hannah S.; Daniel, Gregory B.; Laeseke, Paul F.; Ziemlewicz, Timothy J.; Kierski, Katharine R.; Ciepluch, Brittany J.; Vlaisavljevich, Eli; Tuohy, Joanne L. (MDPI, 2023-01-25)Osteosarcoma (OS) is a malignant bone tumor treated by limb amputation or limb salvage surgeries and chemotherapy. Histotripsy is a non-thermal, non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. Recent ex vivo and in vivo pilot studies have demonstrated the ability of histotripsy for ablating OS but were limited in scope. This study expands on these initial findings to more fully characterize the effects of histotripsy for bone tumors, particularly in tumors with different compositions. A prototype 500 kHz histotripsy system was used to treat ten dogs with suspected OS at an intermediate treatment dose of 1000 pulses per location. One day after histotripsy, treated tumors were resected via limb amputation, and radiologic and histopathologic analyses were conducted to determine the effects of histotripsy for each patient. The results of this study demonstrated that histotripsy ablation is safe and feasible in canine patients with spontaneous OS, while offering new insights into the characteristics of the achieved ablation zone. More extensive tissue destruction was observed after histotripsy compared to that in previous reports, and radiographic changes in tumor size and contrast uptake following histotripsy were reported for the first time. Overall, this study significantly expands our understanding of histotripsy bone tumor ablation and informs future studies for this application.
- Histotripsy ablation for the treatment of feline injection site sarcomas: a first-in-cat in vivo feasibility studyRuger, Lauren N.; Yang, Ester; Coutermarsh-Ott, Sheryl; Vickers, Elliana; Gannon, Jessica; Nightengale, Marlie; Hsueh, Andy; Ciepluch, Brittany; Dervisis, Nikolaos; Vlaisavljevich, Eli; Klahn, Shawna (Taylor & Francis, 2023)Purpose Feline soft tissue sarcoma (STS) and injection site sarcoma (fISS) are rapidly growing tumors with low metastatic potential, but locally aggressive behavior. Histotripsy is a non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. In this study, we investigated the in vivo safety and feasibility of histotripsy to treat fISS using a custom 1 MHz transducer. Materials and Methods Three cats with naturally-occurring STS were treated with histotripsy before surgical removal of the tumor 3 to 6 days later. Gross and histological analyses were used to characterize the ablation efficacy of the treatment, and routine immunohistochemistry and batched cytokine analysis were used to investigate the acute immunological effects of histotripsy. Results Results showed that histotripsy ablation was achievable and well-tolerated in all three cats. Precise cavitation bubble clouds were generated in all patients, and hematoxylin & eosin stained tissues revealed ablative damage in targeted regions. Immunohistochemical results identified an increase in IBA-1 positive cells in treated tissues, and no significant changes in cytokine concentrations were identified post-treatment. Conclusions Overall, the results of this study demonstrate the safety and feasibility of histotripsy to target and ablate superficial feline STS and fISS tumors and guide the clinical development of histotripsy devices for this application.
- Histotripsy Ablation of Spontaneously Occurring Canine Bone TumorsRuger, Lauren N.; Hay, Alayna N.; Gannon, Jessica M.; Sheppard, Hannah O.; Coutermarsh-Ott, Sheryl L.; Daniel, Gregory B.; Kierski, Katharine R.; Ciepluch, Brittany J.; Vlaisavljevich, Eli; Tuohy, Joanne L. (IEEE, 2023-01)Objective: Osteosarcoma (OS) is a devastating primary bone tumor in dogs and humans with limited non-surgical treatment options. As the first completely non-invasive and non-thermal ablation technique, histotripsy has the potential to significantly improve the standard of care for patients with primary bone tumors. Introduction: Standard of care treatment for primary appendicular OS involves surgical resection via either limb amputation or limb-salvage surgery for suitable candidates. Biological similarities between canine and human OS make the dog an informative comparative oncology research model to advance treatment options for primary OS. Evaluating histotripsy for ablating spontaneous canine primary OS will build a foundation upon which histotripsy can be translated clinically into a standard of care therapy for canine and human OS. Methods: Five dogs with suspected spontaneous OS were treated with a 500 kHz histotripsy system guided by real-time ultrasound image guidance. Spherical ablation volumes within each tumor (1.25-3 cm in diameter) were treated with single cycle histotripsy pulses applied at a pulse repetition frequency of 500 Hz and a dose of 500 pulses/point. Results: Tumor ablation was successfully identified grossly and histologically within the targeted treatment regions of all subjects. Histotripsy treatments were well-tolerated amongst all patients with no significant clinical adverse effects. Conclusion & Significance: Histotripsy safely and effectively ablated the targeted treatment volumes in all subjects, demonstrating its potential to serve as a non-invasive treatment modality for primary bone tumors.
- Investigations of Ultrasound-Guided Histotripsy Ablation for Soft Tissue Sarcomas, Osteosarcomas, and Brain TumorsRuger, Lauren N. (Virginia Tech, 2023-05-16)Histotripsy is a non-thermal, non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue into an acellular homogenate. Histotripsy applies microsecond-length, high pressure (> 10 MPa) pulses to initiate the rapid expansion and collapse of nuclei in a millimeter-scale focal region, applying large stresses and strains to targeted tissues. The cavitation "bubble cloud" generated during histotripsy treatment can be visualized in real time on ultrasound imaging, assisting with treatment guidance and monitoring. Past studies have demonstrated histotripsy's potential for a variety of applications, but histotripsy has not yet been investigated for superficial musculoskeletal tumor ablation. Additionally, preliminary investigations using histotripsy to ablate brain tumors are underway, but require advanced histotripsy devices capable of overcoming attenuation of the therapeutic ultrasound signal by the skull and rely on MRI for real-time guidance. As a result, open questions remain regarding ultrasound-guided histotripsy for brain tumors. Early evidence also suggests that histotripsy ablation may induce immunogenic changes in the tumor microenvironment. Continued research is needed to explain and corroborate these findings under conditions more immunologically representative of human cancers, such as in large animal models with spontaneous tumors. This dissertation investigates the safety and feasibility of using ultrasound-guided histotripsy to ablate superficial soft tissue sarcomas (STS), osteosarcomas (OS), and brain tumors and considers the immunological impacts of histotripsy treatment for STS and OS. The research described herein (1) investigates the ability of histotripsy to treat superficial STS tumors in companion animals with spontaneous tumors, (2) investigates the feasibility of treating bone tumors with histotripsy through a series of ex vivo and in vivo studies, and (3) applies histotripsy for the minimally invasive treatment of superficial brain tumors. The completion of this dissertation will provide significant insight into the ability of ultrasound-guided histotripsy to treat novel tumor types (i.e., STS, OS, and brain tumors) and the potential role of histotripsy in veterinary medicine. Future work will build upon the studies detailed in this dissertation to optimize ultrasound-guided histotripsy for the treatment of complete STS, OS, and brain tumors in veterinary and human patients.
- Mechanical High-Intensity Focused Ultrasound (Histotripsy) in Dogs with Spontaneously Occurring Soft Tissue SarcomasRuger, Lauren N.; Yang, Ester; Gannon, Jessica; Sheppard, Hannah; Coutermarsh-Ott, Sheryl; Ziemlewicz, Timothy J.; Dervisis, Nikolaos G.; Allen, Irving C.; Daniel, Gregory B.; Tuohy, Joanne L.; Vlaisavljevich, Eli; Klahn, Shawna L. (IEEE, 2023-03)Introduction: Histotripsy is a non-invasive focused ultrasound therapy that uses controlled acoustic cavitation to mechanically disintegrate tissue. To date, there are no reports investigating histotripsy for the treatment of soft tissue sarcoma (STS). Objective: This study aimed to investigate the in vivo feasibility of ablating STS with histotripsy and to characterize the impact of partial histotripsy ablation on the acute immunologic response in canine patients with spontaneous STS. Methods: A custom 500 kHz histotripsy system was used to treat ten dogs with naturally occurring STS. Four to six days after histotripsy, tumors were surgically resected. Safety was determined by monitoring vital signs during treatment and post-treatment physical examinations, routine lab work, and owners’ reports. Ablation was characterized using radiologic and histopathologic analyses. Systemic immunological impact was evaluated by measuring changes in cytokine concentrations, and tumor microenvironment changes were evaluated by characterizing changes in infiltration with tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) using multiplex immunohistochemistry and differential gene expression. Results: Results showed histotripsy ablation was achievable and well-tolerated in all ten dogs. Immunological results showed histotripsy induced pro-inflammatory changes in the tumor microenvironment. Conclusion & Significance: Overall, this study demonstrates histotripsy's potential as a precise, non-invasive treatment for STS.