Browsing by Author "Ruzzante, Livio"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Anopheles mosquitoes reveal new principles of 3D genome organization in insectsLukyanchikova, Varvara; Nuriddinov, Miroslav; Belokopytova, Polina; Taskina, Alena; Liang, Jiangtao; Reijnders, Maarten J. M. F.; Ruzzante, Livio; Feron, Romain; Waterhouse, Robert M.; Wu, Yang; Mao, Chunhong; Tu, Zhijian Jake; Sharakhov, Igor V.; Fishman, Veniamin (Nature Portfolio, 2022-04-12)Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for similar to 100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
- Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assembliesWaterhouse, Robert M.; Aganezov, Sergey; Anselmetti, Yoann; Lee, Jiyoung; Ruzzante, Livio; Reijnders, Maarten J. M. F.; Feron, Romain; Bérard, Sèverine; George, Phillip; Hahn, Matthew W.; Howell, Paul I.; Kamali, Maryam; Koren, Sergey; Lawson, Daniel; Maslen, Gareth; Peery, Ashley; Phillippy, Adam M.; Sharakhova, Maria V.; Tannier, Eric; Unger, Maria F.; Zhang, Simo V.; Alekseyev, Max A.; Besansky, Nora J.; Chauve, Cedric; Emrich, Scott J.; Sharakhov, Igor V. (2020-01-02)Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from ‘finished’. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. Results We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.
- Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral TraitsSun, Cheng; Huang, Jiaxing; Wang, Yun; Zhao, Xiaomeng; Su, Long; Thomas, Gregg W. C.; Zhao, Mengya; Zhang, Xingtan; Jungreis, Irwin; Kellis, Manolis; Vicario, Saverio; Sharakhov, Igor V.; Bondarenko, Semen M.; Hasselmann, Martin; Kim, Chang N.; Paten, Benedict; Penso-Dolfin, Luca; Wang, Li; Chang, Yuxiao; Gao, Qiang; Ma, Ling; Ma, Lina; Zhang, Zhang; Zhang, Hongbo; Zhang, Huahao; Ruzzante, Livio; Robertson, Hugh M.; Zhu, Yihui; Liu, Yanjie; Yang, Huipeng; Ding, Lele; Wang, Quangui; Ma, Dongna; Xu, Weilin; Liang, Cheng; Itgen, Michael W.; Mee, Lauren; Cao, Gang; Zhang, Ze; Sadd, Ben M.; Hahn, Matthew W.; Schaack, Sarah; Barribeau, Seth M.; Williams, Paul H.; Waterhouse, Robert M.; Mueller, Rachel Lockridge (Oxford University Press, 2021-02-01)Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.