Browsing by Author "Sadigh, Dorsa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Learning Human Objectives from Sequences of Physical CorrectionsLi, Mengxi; Canberk, Alper; Losey, Dylan P.; Sadigh, Dorsa (IEEE, 2021-05-30)When personal, assistive, and interactive robots make mistakes, humans naturally and intuitively correct those mistakes through physical interaction. In simple situations, one correction is sufficient to convey what the human wants. But when humans are working with multiple robots or the robot is performing an intricate task often the human must make several corrections to fix the robot’s behavior. Prior research assumes each of these physical corrections are independent events, and learns from them one-at-a-time. However, this misses out on crucial information: each of these interactions are interconnected, and may only make sense if viewed together. Alternatively, other work reasons over the final trajectory produced by all of the human’s corrections. But this method must wait until the end of the task to learn from corrections, as opposed to inferring from the corrections in an online fashion. In this paper we formalize an approach for learning from sequences of physical corrections during the current task. To do this we introduce an auxiliary reward that captures the human’s trade-off between making corrections which improve the robot’s immediate reward and long-term performance. We evaluate the resulting algorithm in remote and in-person human-robot experiments, and compare to both independent and final baselines. Our results indicate that users are best able to convey their objective when the robot reasons over their sequence of corrections.
- Learning latent actions to control assistive robotsLosey, Dylan P.; Jeon, Hong Jun; Li, Mengxi; Srinivasan, Krishnan; Mandlekar, Ajay; Garg, Animesh; Bohg, Jeannette; Sadigh, Dorsa (Springer, 2021-08-04)Assistive robot arms enable people with disabilities to conduct everyday tasks on their own. These arms are dexterous and high-dimensional; however, the interfaces people must use to control their robots are low-dimensional. Consider teleoperating a 7-DoF robot arm with a 2-DoF joystick. The robot is helping you eat dinner, and currently you want to cut a piece of tofu. Today’s robots assume a pre-defined mapping between joystick inputs and robot actions: in one mode the joystick controls the robot’s motion in the x–y plane, in another mode the joystick controls the robot’s z–yaw motion, and so on. But this mapping misses out on the task you are trying to perform! Ideally, one joystick axis should control how the robot stabs the tofu, and the other axis should control different cutting motions. Our insight is that we can achieve intuitive, user-friendly control of assistive robots by embedding the robot’s high-dimensional actions into low-dimensional and human-controllable latent actions. We divide this process into three parts. First, we explore models for learning latent actions from offline task demonstrations, and formalize the properties that latent actions should satisfy. Next, we combine learned latent actions with autonomous robot assistance to help the user reach and maintain their high-level goals. Finally, we learn a personalized alignment model between joystick inputs and latent actions. We evaluate our resulting approach in four user studies where non-disabled participants reach marshmallows, cook apple pie, cut tofu, and assemble dessert. We then test our approach with two disabled adults who leverage assistive devices on a daily basis.
- Learning reward functions from diverse sources of human feedback: Optimally integrating demonstrations and preferencesBıyık, Erdem; Losey, Dylan P.; Palan, Malayandi; Landolfi, Nicholas C.; Shevchuk, Gleb; Sadigh, Dorsa (SAGE, 2022-01)Reward functions are a common way to specify the objective of a robot. As designing reward functions can be extremely challenging, a more promising approach is to directly learn reward functions from human teachers. Importantly, data from human teachers can be collected either passively or actively in a variety of forms: passive data sources include demonstrations (e.g., kinesthetic guidance), whereas preferences (e.g., comparative rankings) are actively elicited. Prior research has independently applied reward learning to these different data sources. However, there exist many domains where multiple sources are complementary and expressive. Motivated by this general problem, we present a framework to integrate multiple sources of information, which are either passively or actively collected from human users. In particular, we present an algorithm that first utilizes user demonstrations to initialize a belief about the reward function, and then actively probes the user with preference queries to zero-in on their true reward. This algorithm not only enables us combine multiple data sources, but it also informs the robot when it should leverage each type of information. Further, our approach accounts for the human’s ability to provide data: yielding user-friendly preference queries which are also theoretically optimal. Our extensive simulated experiments and user studies on a Fetch mobile manipulator demonstrate the superiority and the usability of our integrated framework.