Browsing by Author "Salah, Mohamed"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Electrospun PVA Polymer Embedded with Ceria Nanoparticles as Silicon Solar Cells Rear Surface Coaters for Efficiency ImprovementSamir, Effat; Salah, Mohamed; Hajjiah, Ali; Shehata, Nader; Fathy, Marwa; Hamed, Aya (MDPI, 2018-06-04)This paper introduces electrospun nanofibers embedded with ceria nanoparticles as silicon solar cells coaters, showing their influence on the solar cells efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce4+ state ions to the Ce3+ ones. These O-vacancies follow the rule of improving silicon solar cellconductivity through the hopping mechanism. Besides, under violet excitation, the reduced trivalent cerium Ce3+ ions are directly responsible for down-converting the un-absorbed violet or ultra-violet (UV) wavelengths to a resulted green fluorescence emission at ~520 nm. These are absorbed through the silicon solar cells active layer. When electrospun Poly(vinyl alcohol) (PVA) is embedded with ceria nanoparticles on the rear surface of silicon solar cell, a promising enhancement in the behavior of solar cells current–voltage (I–V) curve is observed. The efficiency has improved by about 24% of its initial value due to the mutual impact of improving both electrical conductivity and optical conversions from the higher surface-to-volume ratio of electrospun nanofibers embedded by ceria nanoparticles. The solar cell efficiency improvement is due to the mutual impact of both optical down-conversion and better electric paths via the used nanocomposite. The added nanostructures coating can utilize part of the transmitted UV or violet spectrum through the cell as optical conversion from violet to the visible region. In addition, the formed active tri-valent states are associated with O-vacancies which can help in a better conductivity of the generated photoelectrons from the cell through the hopping mechanism. The PVA nanofibers host offers a better distribution of ceria nanoparticles and better conductivity paths for the photoelectrons based on the better surface-to-volume ratio of the nanofibers.
- Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell PerformanceShehata, Nader; Clavel, Michael B.; Meehan, Kathleen; Samir, Effat; Gaballah, Soha; Salah, Mohamed (MDPI, 2015-11-12)This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs) as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.
- Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell EfficiencyHajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed (MDPI, 2018-05-23)This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce4+ state ions to the Ce3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce4+ to Ce3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.
- Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/MWCNT Composite Membrane: Facile MethodShehata, Nader; Elnabawy, Eman; Abdelkader, Mohamed; Hassanin, Ahmed H.; Salah, Mohamed; Nair, Remya; Ahmad Bhat, Sameer (MDPI, 2018-09-01)Polyvinylidene Fluoride (PVDF) piezoelectric electrospun nanofibers have been intensively used for sensing and actuation applications in the last decade. However, in most cases, random PVDF piezoelectric nanofiber mats have moderate piezoelectric response compared to aligned PVDF nanofibers. In this work, we demonstrate the effect of alignment conducted by a collector setup composed of two-metal bars with gab inside where the aligned fiber can be formed. That is what we called static aligned nanofibers, which is distinct from the dynamic traditional technique using a high speed rotating drum. The two-bar system shows a superior alignment degree for the PVDF nanofibers. Also, the effect of added carbon nanotubes (CNTs) of different concentrations to PVDF nanofibers is studied to observe the enhancement of piezoelectric response of PVDF nanofibers. Improvement of β-phase content of aligned (PVDF) nanofibers, as compared to randomly orientated fibers, is achieved. Significant change in the piezoelectricity of PVDF fiber is produced with added CNTs with saturation response in the case of 0.3 wt % doping of CNTs, and piezoelectric sensitivity of 73.8 mV/g with applied masses down to 100 g.