Browsing by Author "Salas, Ramiro"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Belief about nicotine modulates subjective craving and insula activity in deprived smokersGu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R.; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M.; Montague, P. Read (Frontiers, 2016-07-13)Little is known about the specific neural mechanisms through which cognitive factors influence craving and associated brain responses, despite the initial success of cognitive therapies in treating drug addiction. In this study, we investigated how cognitive factors such as beliefs influence subjective craving and neural activities in nicotineaddicted individuals using model-based functional magnetic resonance imaging (fMRI) and neuropharmacology. Deprived smokers (N = 24) participated in a two-by-two balanced placebo design, which crossed beliefs about nicotine (told “nicotine” vs. told “no nicotine”) with the nicotine content in a cigarette (nicotine vs. placebo) which participants smoked immediately before performing a fMRI task involving reward learning. Subjects’ reported craving was measured both before smoking and after the fMRI session. We found that first, in the presence of nicotine, smokers demonstrated significantly reduced craving after smoking when told “nicotine in cigarette” but showed no change in craving when told “no nicotine.” Second, neural activity in the insular cortex related to craving was only significant when smokers were told “nicotine” but not when told “no nicotine.” Both effects were absent in the placebo condition. Third, insula activation related to computational learning signals was modulated by belief about nicotine regardless of nicotine’s presence. These results suggest that belief about nicotine has a strong impact on subjective craving and insula responses related to both craving and learning in deprived smokers, providing insights into the complex nature of belief–drug interactions.
- Belief about nicotine selectively modulates value and reward prediction error signals in smokersGu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R.; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M.; Montague, P. Read (NAS, 2015-02-24)Little is known about how prior beliefs impact biophysically described processes in the presence of neuroactive drugs, which presents a profound challenge to the understanding of the mechanisms and treatments of addiction. We engineered smokers’ prior beliefs about the presence of nicotine in a cigarette smoked before a functional magnetic resonance imaging session where subjects carried out a sequential choice task. Using a model-based approach, we show that smokers’ beliefs about nicotine specifically modulated learning signals (value and reward prediction error) defined by a computational model of mesolimbic dopamine systems. Belief of “no nicotine in cigarette” (compared with “nicotine in cigarette”) strongly diminished neural responses in the striatum to value and reward prediction errors and reduced the impact of both on smokers’ choices. These effects of belief could not be explained by global changes in visual attention and were specific to value and reward prediction errors. Thus, by modulating the expression of computationally explicit signals important for valuation and choice, beliefs can override the physical presence of a potent neuroactive compound like nicotine. These selective effects of belief demonstrate that belief can modulate modelbased parameters important for learning. The implications of these findings may be far ranging because belief-dependent effects on learning signals could impact a host of other behaviors in addiction as well as in other mental health problems.
- BOLD responses to negative reward prediction errors in human habenulaSalas, Ramiro; Baldwin, Philip R.; Biasi, Mariella de; Montague, P. Read (Frontiers, 2010-05-11)Although positive reward prediction error, a key element in learning that is signaled by dopamine cells, has been extensively studied, little is known about negative reward prediction errors in humans. Detailed animal electrophysiology shows that the habenula, an integrative region involved in many processes including learning, reproduction, and stress responses, also encodes negative reward-related events such as negative reward prediction error signals. In humans, however, the habenula's extremely small size has prevented direct assessments of its function. We developed a method to functionally locate and study the habenula in humans using fMRI, based on the expected reward-dependent response phenomenology of habenula and striatum and, we provide conclusive evidence for activation in human habenula to negative reward prediction errors.
- Choosing Money over Drugs: The Neural Underpinnings of Difficult Choice in Chronic Cocaine UsersWesley, Michael J.; Lohrenz, Terry; Koffarnus, Mikhail N.; McClure, Samuel M.; De La Garza, Richard II; Salas, Ramiro; Thompson-Lake, Daisy G. Y.; Newton, Thomas F.; Bickel, Warren K.; Montague, P. Read (Hindawi, 2014-08-14)Addiction is considered a disorder that drives individuals to choose drugs at the expense of healthier alternatives. However, chronic cocaine users (CCUs)who meet addiction criteria retain the ability to choose money in the presence of the opportunity to choose cocaine. The neural mechanisms that differentiate CCUs from non-cocaine using controls (Controls) while executing these preferred choices remain unknown. Thus, therapeutic strategies aimed at shifting preferences towards healthier alternatives remain somewhat uninformed. This study used BOLD neuroimaging to examine brain activity as fifty CCUs and Controls performed single- and cross-commodity intertemporal choice tasks for money and/or cocaine. Behavioral analyses revealed preferences for each commodity type. Imaging analyses revealed the brain activity that differentiated CCUs from Controls while choosing money over cocaine. We observed thatCCUs devalued future commodities more than Controls. Choices for money as opposed to cocaine correlated with greater activity in dorsal striatum of CCUs, compared to Controls. In addition, choices for future money as opposed to immediate cocaine engaged the left dorsolateral prefrontal cortex (DLPFC) of CCUs more than Controls. These data suggest that the ability of CCUs to execute choices away from cocaine relies on activity in the dorsal striatum and left DLPFC.