Browsing by Author "Salcedo, Mary K."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- 3D X-ray analysis of the subterranean burrowing depth and pupal chamber size of Laricobius (Coleoptera: Derodontidae), a specialist predator of Adelges tsugae (Hemiptera: Adelgidae)Hillen, Ashleigh P.; Foley, Jeremiah R.; Salcedo, Mary K.; Socha, John J.; Salom, Scott M. (Oxford University Press, 2023-05-01)The non-native hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has caused a significant decline of eastern hemlock, Tsuga canadensis L. (Pinales: Pinaceae), and Carolina hemlock, Tsuga caroliniana Engelmann (Pinales: Pinaceae), in eastern North America. Biological control of HWA has focused on the use of 2 Laricobius spp. (Coleoptera: Derodontidae), natural predators of HWA, which require arboreal and subterranean life phases to complete their development. In its subterranean phase, Laricobius spp. are subject to abiotic factors including soil compaction or soil-applied insecticides used to protect hemlock from HWA. This study used 3D X-ray microcomputed tomography (micro-CT) to identify the depth at which Laricobius spp. burrows during its subterranean lifecycle, characterize pupal chamber volume, and determine whether soil compaction had a significant effect on these variables. The mean burrowing depth in the soil of individuals was 27.0 mm ± 14.8 (SD) and 11.4 mm ± 11.8 (SD) at compaction levels of 0.36 and 0.54 g/ cm3, respectively. The mean pupal chamber volume was 11.15 mm3 ± 2.8 (SD) and 7.65 mm3 ± 3.5 (SD) in soil compacted at 0.36 and 0.54 g/cm3, respectively. These data show that soil compaction influences burrowing depth and pupal chamber size for Laricobius spp.This information will help us better identify the effect of soil-applied insecticide residues on estivating Laricobius spp. and soil-applied insecticide residues in the field. Additionally, these results demonstrate the utility of 3D micro-CT in assessing subterranean insect activity in future studies.
- A biologically accurate model of directional hearing in the parasitoid fly Ormia ochraceaMikel-Stites, Max R.; Salcedo, Mary K.; Socha, John J.; Marek, Paul E.; Staples, Anne E. (Cold Spring Harbor Laboratory, 2021-09-17)Although most binaural organisms localize sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs instead. One of these animals, the parasitoid fly Ormia ochracea, has astoundingly accurate sound localization abilities and can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans. This is accomplished despite an intertympanal distance of only 0.5 mm, which is less than 1/100th of the wavelength of the sound emitted by the crickets that it parasitizes. In 1995, Miles et al. developed a model of hearing mechanics in O. ochracea, which works well for incoming sound angles of less than ±30°, but suffers from reduced accuracy (up to 60% error) at higher angles. Even with this limitation, it has served as the basis for multiple bio-inspired microphone designs for decades. Here, we present critical improvements to the classic O. ochracea hearing model based on information from 3D reconstructions of O. ochracea’s tympana. The 3D images reveal that the tympanal organ has curved lateral faces in addition to the flat front-facing prosternal membranes represented in the Miles model. To mimic these faces, we incorporated spatially-varying spring and damper coefficients that respond asymmetrically to incident sound waves, making a new quasi-two-dimensional (q2D) model. The q2D model has high accuracy (average errors of less than 10%) for the entire range of incoming sound angles. This improved biomechanical hearing model can inform the development of new technologies and may help to play a key role in developing improved hearing aids. Significance Statement: The ability to identify the location of sound sources is critical to organismal survival and for technologies that minimize unwanted background noise, such as directional microphones for hearing aids. Because of its exceptional auditory system, the parasitoid fly Ormia ochracea has served as an important model for binaural hearing and a source of bioinspiration for building tiny directional microphones with outsized sound localization abilities. Here, we performed 3D imaging of the fly’s tympanal organs and used the morphological information to improve the current model for hearing in O. ochracea. This model greatly expands the range of biological accuracy from ±30° to all incoming sound angles, providing a new avenue for studies of binaural hearing and further inspiration for fly-inspired technologies.
- Complex hemolymph circulation patterns in grasshopper wingsSalcedo, Mary K.; Jun, Brian H.; Socha, John J.; Pierce, Naomi E.; Vlachos, Pavlos P.; Combes, Stacey A. (Nature Portfolio, 2023-03)An insect's living systems-circulation, respiration, and a branching nervous system-extend from the body into the wing. Wing hemolymph circulation is critical for hydrating tissues and supplying nutrients to living systems such as sensory organs across the wing. Despite the critical role of hemolymph circulation in maintaining healthy wing function, wings are often considered "lifeless" cuticle, and flows remain largely unquantified. High-speed fluorescent microscopy and particle tracking of hemolymph in the wings and body of the grasshopper Schistocerca americana revealed dynamic flow in every vein of the fore- and hindwings. The global system forms a circuit, but local flow behavior is complex, exhibiting three distinct types: pulsatile, aperiodic, and "leaky" flow. Thoracic wing hearts pull hemolymph from the wing at slower frequencies than the dorsal vessel; however, the velocity of returning hemolymph (in the hindwing) is faster than in that of the dorsal vessel. To characterize the wing's internal flow mechanics, we mapped dimensionless flow parameters across the wings, revealing viscous flow regimes. Wings sustain ecologically important insect behaviors such as pollination and migration. Analysis of the wing circulatory system provides a template for future studies investigating the critical hemodynamics necessary to sustaining wing health and insect flight. Study of grasshopper wings shows that hemolymph flows through every vein in the insect wing, creating a broad circuitous flow pattern in the wings, with three different flow behaviours (pulsatile, leaky, aperiodic).
- Transient use of hemolymph for hydraulic wing expansion in cicadasSalcedo, Mary K.; Ellis, Tyler E.; Saenz, Angela S.; Lu, Joyce; Worrell, Terrell; Madigan, Michael L.; Socha, John J. (Nature Portfolio, 2023-04)Insect wings must be flexible, light, and strong to allow dynamic behaviors such as flying, mating, and feeding. When winged insects eclose into adults, their wings unfold, actuated hydraulically by hemolymph. Flowing hemolymph in the wing is necessary for functioning and healthy wings, both as the wing forms and as an adult. Because this process recruits the circulatory system, we asked, how much hemolymph is pumped into wings, and what happens to the hemolymph afterwards? Using Brood X cicadas (Magicicada septendecim), we collected 200 cicada nymphs, observing wing transformation over 2 h. Using dissection, weighing, and imaging of wings at set time intervals, we found that within 40 min after emergence, wing pads morphed into adult wings and total wing mass increased to similar to 16% of body mass. Thus, a significant amount of hemolymph is diverted from body to wings to effectuate expansion. After full expansion, in the similar to 80 min after, the mass of the wings decreased precipitously. In fact, the final adult wing is lighter than the initial folded wing pad, a surprising result. These results demonstrate that cicadas not only pump hemolymph into the wings, they then pump it out, producing a strong yet lightweight wing.