Browsing by Author "Santander, Ricardo D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A Bitter, Complex Problem: Causal Colletotrichum Species in Virginia Orchards and Apple Fruit SusceptibilityKhodadadi, Fatemeh; Santander, Ricardo D.; McHenry, Diana J.; Jurick, Wayne M., II; Aćimović, Srđan G. (American Phytopathological Society, 2023-10-23)Bitter rot, caused by Colletotrichum species, is one of the most devastating summer rot diseases affecting apple production in the Eastern United States. Given the differences in virulence and fungicide sensitivity levels between organisms belonging to the acutatum species complex (CASC) and the gloeosporioides species complex (CGSC), monitoring their diversity, geographic distribution, and frequency are essential for successful bitter rot management. In a 662-isolate collection from apple orchards in Virginia, isolates from CGSC were dominant (65.5%) in comparison to the CASC (34.5%). In a subsample of 82 representative isolates, using morphological and multilocus phylogenetic analyses, we identified C. fructicola (26.2%), C. chrysophilum (15.6%), C. siamense (0.8%), and C. theobromicola (0.8%) from CGSC and C. fioriniae (22.1%) and C. nymphaeae (1.6%) from CASC. The dominant species were C. fructicola, followed by C. fioriniae and C. chrysophilum. C. siamense followed by C. theobromicola developed the largest and deepest rot lesions on Honeycrisp fruit in our virulence tests. Detached fruit of nine apple cultivars and one wild accession (Malus sylvestris) were harvested early and late season and tested in controlled conditions for their susceptibility to C. fioriniae and C. chrysophilum. All cultivars were susceptible to both representative bitter rot species, with Honeycrisp fruit being the most susceptible and M. sylvestris, accession PI 369855, being the most resistant. We demonstrate that the frequency and prevalence of species in Colletotrichum complexes are highly variable in the Mid-Atlantic and provide regionspecific data on apple cultivar susceptibility. Our findings are necessary for the successful management of bitter rot as an emerging and persistent problem in apple production both pre- and postharvest.
- Fire blight resistance, irrigation and conducive wet weather improve Erwinia amylovora winter survival in cankersSantander, Ricardo D.; Khodadadi, Fatemeh; Meredith, Christopher L.; Radenovic, Zeljko; Clements, Jon; Aćimović, Srđan G. (Frontiers, 2022-10)Erwinia amylovora causes fire blight, a disease responsible for enormous economic losses in the pome fruit-producing areas where it is present. Despite the abundant research on fire blight, information about E. amylovora population dynamics and survival in fire blight cankers and the plant defense responses to this pathogen in the infected bark are limited. In our study, we obtained fire blight cankers in apple, pear, and Asian pear cultivars showing differing resistance to the disease by shoot inoculation with E. amylovora. We collected cankers from irrigated and non-irrigated trees every 3 months in two independent field experiments and analyzed samples by viability digital PCR. We also assessed the expression of pathogenicity-related (PR) genes in the bark of selected apple and Asian pear cultivars. A logistic regression analysis revealed the impact of environmental and host factors on E. amylovora detection rates in cankers. The chances of detecting live E. amylovora cells in cankers increased significantly in those collected from irrigated trees, in July, and/or during an experiment performed in a year with an expected average rainfall when compared to samples from non-irrigated trees, collected in January, and/or during an experiment performed under environmental conditions dominated by drought. We found a positive correlation between the pathogen detection rates in cankers and the host resistance to fire blight that might be explained by lower E. amylovora survival rates in more damaged tissues of susceptible hosts. The genes PR-1, PR-2, PR-5, and PR-8 were induced in the bark surrounding apple and Asian pear fire blight cankers. Our study, involving the analysis of more than 800 canker samples, provides new knowledge about the fire blight disease cycle and lays the foundation for improved fire blight management and eradication strategies in pome fruit orchards.