Browsing by Author "Santos Lages, Wallace"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- Assisting Spatial Referencing for Collaborative Augmented RealityLi, Yuan (Virginia Tech, 2022-05-27)Spatial referencing denotes the act of referring to a location or an object in space. Since it is often essential in different collaborative activities, good support for spatial referencing could lead to exceptional collaborative experience and performance. Augmented Reality (AR) aims to enhance daily activities and tasks in the real world, including various collaborations and social interactions. Good support for accurate and rapid spatial referencing in collaborative AR often requires detailed environment 3D information, which can be critical for the system to acquire as constrained by current technology. This dissertation seeks to address the issues related to spatial referencing in collaborative AR through 3D user interface design and different experiments. Specifically, we start with investigating the impact of poor spatial referencing on close-range, co-located AR collaborations. Next, we propose and evaluate different pointing ray techniques for object reference at a distance without knowledge from the physical environment. We further introduce marking techniques aiming to accurately acquire the position of an arbitrary point in 3D space that can be used for spatial referencing. Last, we provide a systematic assessment of an AR collaborative application that supports efficient spatial referencing in remote learning to demonstrate its benefit. Overall, the dissertation provides empirical evidence of spatial referencing challenges and benefits to collaborative AR and solutions to support adequate spatial referencing when model information from the environment is missing.
- The Battle of the KingsGorjian, Mahshid (Virginia Tech, 2019-10-22)The work presented in this thesis explores the possibility to integrate 2D drawings with 2.5D animated characters in 2.5D computer graphics. The purpose was to show the effects of the illustrated artistic style and produce an effective emotional and story in motion without realistic animation look. Inspiration for the story comes from a true story based on Iranian history and an epic story that occurred just thousands of years ago. I focused my work on the context of Iran's history.
- Design and Evaluation of Virtual Displays to Enable the Future of Work from AnywherePavanatto Soares, Leonardo (Virginia Tech, 2024-09-09)The future of work is rapidly evolving, particularly in knowledge-based professions such as programming, engineering, and scientific research. These fields traditionally rely on physical monitors in office settings. However, with the rise of hybrid work models fueled by technological advances and the COVID-19 pandemic, there is a growing need for flexible and portable display solutions. Workers can now operate from remote settings, their homes, or mobile scenarios while still requiring substantial screen space to complete their tasks. This dissertation investigates the design and evaluation of virtual displays rendered through head-worn displays (HWDs) as a promising alternative, aiming to optimize them for productive work. These displays offer flexibility, allowing users to achieve large monitor spaces in virtual or augmented reality environments, adaptable to any location. We aim to answer three research questions: (1) ``How does replacing or extending physical monitors with virtual displays using current technology impact the user experience of productivity tasks?'', (2) ``How can we take advantage of the spatial flexibility property of virtual displays to eliminate screen boundaries and increase the amount of space available to users?'', and (3) ``How can we leverage properties of virtual displays to design techniques that minimize overhead in window management tasks without reducing user freedom?'' Through careful interface design and empirical user studies, we seek to understand how to leverage the unique capabilities of HWDs to enhance productivity, preparing the groundwork for future virtual display systems as technology advances.
- Designing for Reflection: Utilizing slow technology to create tangible interactive designs for reducing technostressBehzad Behbahani, Armaghan (Virginia Tech, 2019-11-12)Technostress is an emerging and significant psychological phenomenon associated with the use of technology. It impacts human behavior and distracts from living a healthy and meaningful life. As humans increasingly encounter computational technology on a daily basis, there is a need to understand and manage the anxieties and tensions that can result from these interactions. Using the lens of critical design, this thesis explores this concept of technology induced stress and promotes reflection, personal growth and awareness through three different design research methods. It further builds on the topic of slow technology which unfolds in the form of a design fiction, design probe and design artifacts, challenging our understanding of technostress while embracing constructive discussions and creative designs to speculate the human-technology relationship.
- Encyclopædia Mundi: A digital experienceGe, Tianyu (Virginia Tech, 2021-05-28)Encyclopædia Mundi is an interactive software experience that questions the relationships between the authority of authorship, knowledge, and artificially generated text. The software presents itself as a genuine 90s digital encyclopedia, but the absurdity of the generated text, which is syntactically correct but semantically dubious, subverts the audience's expectation and reveals its true nature as an artwork. In this context, the audience is prompted to reflect on how we socially attribute authority to existing encyclopedic models, as well as the future role of artificial intelligence in contributing to our understanding of knowledge, truth, and reality.
- Evaluating Collaborative Cues for Remote Affinity Diagramming Tasks in Augmented RealityLlorens, Nathaniel Roman (Virginia Tech, 2021-09-03)This thesis documents the design and implementation of an augmented reality (AR) application that could be extended to support group brainstorming tasks remotely. Additionally, it chronicles our investigation into the helpfulness of traditional collaborative cues in this novel application of augmented reality. We implemented IdeaSpace, an interactive application that emulates an affinity diagramming environment on an AR headset. In our application, users can organize and manipulate virtual sticky notes around a central virtual board. We performed a user study, with each session requiring users to perform an affinity diagramming clustering task with and without common collaborative cues. Our results indicate that the presence or absence of cues has little effect on this task, or that other factors played a larger role than cue condition, such as learning effects. Our results also show that our application's usability could be improved. We conclude this document with a discussion of our results and the design implications that may arise from them.
- Exploring and Promoting Family Connections at a Distance Through FamilySongTibau Benitez, Javier Alejandro (Virginia Tech, 2020-02-03)This work explores the design of domestic Media Spaces by introducing and studying FamilySong (FS), a system that allows the synchronous playback of music between two remote households. FS does not share live audio or video, yet our studies show that FS provides a context for increasing serendipity as families integrate it into their ecology of communication practices and devices. Through three design iterations involving Autobiographical Design, Research-Through-Design, and qualitative research methods, we study six Latin American migrant families (with parents and children in the United States, and grandparents in Ecuador and Mexico), and one from the U.S., interact with FamilySong. We have found that, individually, family members have differing motivations and reactions to using the system. However, participants felt that the shared experience was meaningful to them and that they could use FamilySong to communicate important intentions, values and emotions as well as musical experiences. In the most recent iteration, the main interactions empowered very young children's participation in music selection. This has been met with joy and excitement by all but also with occasional behavioral dilemmas.This work explores and expands the design space of Media Spaces to include a set of artifacts that forgo its central definition yet provide similar emergent qualities including enhanced mutual awareness, connection, and communication. FS design explores the intersection of family practices and values---of togetherness and longing, parent-child dynamics at all ages, kinship, identity and culture---, and divided versus focused attention in the home. It also enriches our understanding of designing technology for meaningful interaction that supports loved ones and their values.
- A Framework for Incorporating Virtual Reality into the Early Stages of the Design Process and Massing StudiesSaghafi Moghaddam, Sara (Virginia Tech, 2024-09-10)This dissertation studies the integration of Virtual Reality (VR) into the early stages of the architectural design process, particularly during massing studies. The research proposes a framework identifying the necessary knowledge domains and technologies to facilitate this integration. Traditional design tools often restrict architects' ability to fully explore spatial qualities and contextualize their ideas within the project site, limiting their understanding of spatial relationships, scale, and proportions. By merging VR technologies into the early design stages, architects can better visualize their proposals within the site context, iterate more rapidly among massing design alternatives, and enhance decision-making. The research, based on a literature review, class observations, user studies, immersive case studies, and the Delphi method, examines how VR can support the exploration of design alternatives at a 1:1 scale, enabling real-time feedback and iterative processes. The findings highlight the opportunities and challenges within the design workflow, demonstrating that VR can significantly improve design feedback, expand the thinking space and user engagement, and enrich spatial understanding. The proposed framework identifies key decision nodes and knowledge domains essential for effective VR integration in architectural practice. Additionally, the study suggests a suitable interface for VR-integrated tools and proposes a communication model between architects and VR developers.
- Glanceable AR: Towards a Pervasive and Always-On Augmented Reality FutureLu, Feiyu (Virginia Tech, 2023-07-06)Augmented reality head-worn displays (AR HWDs) have the potential to assist personal computing and the acquisition of everyday information. With advancements in hardware and tracking, these devices are becoming increasingly lightweight and powerful. They could eventually have the same form factor as normal pairs of eyeglasses, be worn all-day, overlaying information pervasively on top of the real-world anywhere and anytime to continuously assist people’s tasks. However, unlike traditional mobile devices, AR HWDs are worn on the head and always visible. If designed without care, the displayed virtual information could also be distracting, overwhelming, and take away the user’s attention from important real- world tasks. In this dissertation, we research methods for appropriate information displays and interactions with future all-day AR HWDs by seeking answers to four questions: (1) how to mitigate distractions of AR content to the users; (2) how to prevent AR content from occluding the real-world environment; (3) how to support scalable on-the-go access to AR content; and (4) how everyday users perceive using AR systems for daily information acquisition tasks. Our work builds upon a theory we developed called Glanceable AR, in which digital information is displayed outside the central field of view of the AR display to minimize distractions, but can be accessed through a quick glance. Through five projects covering seven studies, this work provides theoretical and empirical knowledge to prepare us for a pervasive yet unobtrusive everyday AR future, in which the overlaid AR information is easily accessible, non-invasive, responsive, and supportive.
- Improving the Perception of Depth of Image-Based Objects in a Virtual EnvironmentWhang, JooYoung (Virginia Tech, 2020-07-29)In appreciation of High-Performance Computing, modern scientific simulations are scaling into millions and even billions of grid points. As we enter the exa-scale, new strategies are required for visualization and analysis. While Image-Based Rendering (IBR) has emerged as a viable solution to the asymmetry between data size and its storage and required rendering power, it is limited in its 2D image portrayal of 3D spatial objects. This work describes a novel technique to capture, represent, and render depth information in the context of 3D IBR. We tested the value of displacement by displacement map, shading by normal, and image angle interval with our technique. We ran an online user study of 60 participants to evaluate the value of adding depth information back to Image-Based Rendering and found significant benefits.
- Intelligent Augmented Reality (iAR):Context-aware Inference and Adaptation in ARDavari-Najafabadi, Shakiba (Virginia Tech, 2024-09-12)Augmented Reality (AR) transforms the entire 3D space around the user into a dynamic screen, surpassing the limitations of traditional displays and enabling efficient access to multiple pieces of information simultaneously, all day, every day. Recent developments in AR eyeglasses promise that AR could become the next generation of personal computing devices. To realize this vision of pervasive AR, the AR interface must address the challenges posed by constant and omnipresent virtual content. As the user's context changes, the virtual content in AR head-worn displays can occasionally become obtrusive, hindering the user's perception and awareness of their surroundings and their interaction with both the virtual and physical worlds. An intelligent interface is needed to adapt the presentation and interaction of AR content. This dissertation outlines a roadmap towards effective, efficient, and unobtrusive AR through intelligent AR (iAR) systems that automatically learn and adapt the interface to the user's context. To achieve this goal, we: %(1) Design multiple context-aware AR interfaces and explore their design and effectiveness in various contexts through four experiments; (1) Identify multiple AR design principles and guidelines that maintain efficiency while addressing challenges such as occlusion, social interaction, and content placement in AR. (2) Demonstrate the impact of context on AR effectiveness, validating the advantages of context-awareness and highlighting the complexities of implementing a context-aware approach in pervasive AR, particularly in scenarios involving context-switching. (3) Propose a design space for XR interfaces; (4) Develop a taxonomy of quantifiable contextual components and a framework for designing iAR interfaces.
- An Investigation into Locomotion Techniques for Use in Virtual Reality GamesMoore, Cameron Alexander (Virginia Tech, 2023-01-26)The Virtual Reality (VR) industry has experienced growth in recent years with companies such as HTC, Meta, and Valve releasing more consumer-grade headsets. While certain companies such as Meta are pushing for more productivity focused applications of VR, VR remains a primary target for games. Locomotion is still a fundamental problem in games and other applications. Over the years, many researchers have examined application-agnostic and domain-specific techniques. However, few studies have been conducted on techniques specific for the environments and challenges found in first-person games. This thesis contributes with the design and evaluation of new locomotion techniques for VR games. We conducted a user study with 27 participants to evaluate one novel techniques (Repeated Short-Ranged Teleports (RSRT)), a node-based technique (Continuous Movement Pads (CMP)), and a grabbing metaphor (World Grab) with popular techniques (Smooth Locomotion, Teleport). Most preferred by participants, we found that CMP could be a suitable alternative for games compared to Smooth Locomotion and Teleport based on performance data such as time, damage taken, overall usability from System Usability Scale Questionnaires, and overall workload measured from the NASA Task-Load Index Questionnaire. We also found that RSRT and World Grab were least preferred overall and performed measurably worse in terms of time, number of falls in a section designed to measure precision and accuracy, usability, and overall workload.
- Muted BlueNgo, Huy Quoc (Virginia Tech, 2020-07-01)Muted Blue (Whale Level) is a Virtual Reality educational experience that explores the possibility of creating an alternative learning method in an informal learning setting such as a museum. This project seeks to merge art, technology and education to create an immersive, interactive learning experience that is geared toward Gen Z and Millennial but can be enjoyed by every age group. Unreal 4 game engine along with other 3D packages made it possible to develop a Virtual Reality experience that can be used as a complimentary piece that can possibly exist along side a museum exhibit.
- Phenomenal ThingsSchoenborn, Eric Cade (Virginia Tech, 2022-01-19)Phenomenal Things is a comical look into the daily lives of Internet of Things (IoT) artifacts and their experiences as social beings in cyberspace. This Augmented Reality (AR) experience presents a storyworld set in the digital realm where the digital personas of IoT artifacts are engaged in activities normally invisible to humans such as information extraction, learning, talking to each other and communicating with other "things" online. By wearing a head- worn display (HWD), users will encounter anthropomorphized IoT artifacts going about their daily lives and come to understand these characters as digital beings with social lives. Placed inside of cyberspace, participants will find themselves within a circle of anthropomorphized IoT devices in dialogue with one another, as they welcome a new light bulb to their network. As participants move about the AR actors, proximity to each character will cause the participant to "friend" that character. "Friending" in this case means to get close to and influence the version of the story being told by changing the social network of the character. With this work I intend to create a mesmerizing yet subtly-interactive experience using proxemics to create an interactive narrative where participants can create emotional bonds with the AR actors in this immersive theater experiment.
- Walk-Centric User Interfaces for Mixed RealitySantos Lages, Wallace (Virginia Tech, 2018-07-31)Walking is a natural part of our lives and is also becoming increasingly common in mixed reality. Wireless headsets and improved tracking systems allow us to easily navigate real and virtual environments by walking. In spite of the benefits, walking brings challenges to the design of new systems. In particular, designers must be aware of cognitive and motor requirements so that walking does not negatively impact the main task. Unfortunately, those demands are not yet fully understood. In this dissertation, we present new scientific evidence, interaction designs, and analysis of the role of walking in different mixed reality applications. We evaluated the difference in performance of users walking vs. manipulating a dataset during visual analysis. This is an important task, since virtual reality is increasingly being used as a way to make sense of progressively complex datasets. Our findings indicate that neither option is absolutely better: the optimal design choice should consider both user's experience with controllers and user's inherent spatial ability. Participants with reasonable game experience and low spatial ability performed better using the manipulation technique. However, we found that walking can still enable higher performance for participants with low spatial ability and without significant game experience. In augmented reality, specifying points in space is an essential step to create content that is registered with the world. However, this task can be challenging when information about the depth or geometry of the target is not available. We evaluated different augmented reality techniques for point marking that do not rely on any model of the environment. We found that triangulation by physically walking between points provides higher accuracy than purely perceptual methods. However, precision may be affected by head pointing tremors. To increase the precision, we designed a new technique that uses multiple samples to obtain a better estimate of the target position. This technique can also be used to mark points while walking. The effectiveness of this approach was demonstrated with a controlled augmented reality simulation and actual outdoor tests. Moving into the future, augmented reality will eventually replace our mobile devices as the main method of accessing information. Nonetheless, to achieve its full potential, augmented reality interfaces must support the fluid way we move in the world. We investigated the potential of adaptation in achieving this goal. We conceived and implemented an adaptive workspace system, based in the study of the design space and through user contextual studies. Our final design consists in a minimum set of techniques to support mobility and integration with the real world. We also identified a set of key interaction patterns and desirable properties of adaptation-based techniques, which can be used to guide the design of the next-generation walking-centered workspaces.