Browsing by Author "Sarkar, Sayantan"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Aerial high-throughput phenotyping of peanut leaf area index and lateral growthSarkar, Sayantan; Cazenave, Alexandre-Brice; Oakes, Joseph C.; McCall, David S.; Thomason, Wade E.; Abbott, A. Lynn; Balota, Maria (Springer Nature, 2021-11-04)Leaf area index (LAI) is the ratio of the total one-sided leaf area to the ground area, whereas lateral growth (LG) is the measure of canopy expansion. They are indicators for light capture, plant growth, and yield. Although LAI and LG can be directly measured, this is time consuming. Healthy leaves absorb in the blue and red, and reflect in the green regions of the electromagnetic spectrum. Aerial high-throughput phenotyping (HTP) may enable rapid acquisition of LAI and LG from leaf reflectance in these regions. In this paper, we report novel models to estimate peanut (Arachis hypogaea L.) LAI and LG from vegetation indices (VIs) derived relatively fast and inexpensively from the red, green, and blue (RGB) leaf reflectance collected with an unmanned aerial vehicle (UAV). In addition, we evaluate the models’ suitability to identify phenotypic variation for LAI and LG and predict pod yield from early season estimated LAI and LG. The study included 18 peanut genotypes for model training in 2017, and 8 genotypes for model validation in 2019. The VIs included the blue green index (BGI), red-green ratio (RGR), normalized plant pigment ratio (NPPR), normalized green red difference index (NGRDI), normalized chlorophyll pigment index (NCPI), and plant pigment ratio (PPR). The models used multiple linear and artificial neural network (ANN) regression, and their predictive accuracy ranged from 84 to 97%, depending on the VIs combinations used in the models. The results concluded that the new models were time- and cost-effective for estimation of LAI and LG, and accessible for use in phenotypic selection of peanuts with desirable LAI, LG and pod yield.
- Development of high-throughput phenotyping methods and evaluation of morphological and physiological characteristics of peanut in a sub-humid environmentSarkar, Sayantan (Virginia Tech, 2021-01-05)Peanut (Arachis hypogaea L.) is an important food crop in the USA and worldwide with high net returns but yield in excess of 4500 kg ha-1 is needed to offset the production costs. Because yield is limited by biotic and abiotic stresses, cultivars with stress tolerance are needed to optimize yield. The U.S. peanut mini-core germplasm collection is a valuable resource that breeders can use to improve stress tolerance in peanut. Phenotyping for plant height, leaf area, and leaf wilting have been used as proxies for the desired tolerance traits. However, proximal data collection, i.e. measurements are taken on individual plants or in the proximity, is slow. Remote data collection and machine learning techniques for analysis offer a high-throughput phenotyping (HTP) alternative to manual measurements that could help breeding for stress tolerance. The objectives of this study were to 1) develop HTP methods using aerial remote sensing; 2) evaluate the mini-core collection in SE Virginia; and 3) perform a detailed physiological analysis on a sub-set of 28 accessions from the mini-core collection under drought stress, i.e. the sub-set was selected based on contrasting differences under drought in three states, Virginia, Texas, and Oklahoma. To address these objectives, replicated experiments were performed in the field at the Tidewater Agricultural Research and Extension Center in Suffolk, VA, in 2017, 2018, and 2019, under rainfed, irrigated, and controlled conditions using rainout shelters to induce drought. Proximal data collection involved physiological, morphological, and yield measurements. Remote data collection was performed aerially and included collection of red-green-blue (RGB) images and canopy reflectance in the visible, near infra-red, and infra-red spectra. This information was used to estimate plant characteristics related to growth and drought tolerance. Under objective 1), we developed HTP for plant height with 85-95% accuracy, LAI with 85-88% accuracy, and wilting with 91-99% accuracy; this was done with significant reduction of time as compared to proximal data collection. Under objectives 2) and 3), we determined that shorter genotypes were more drought tolerant than taller genotypes; and identified CC650 less wilted and with increased carbon assimilation, electron transport, quantum efficiency, and yield than other accessions.
- Evaluation of the U.S. Peanut Germplasm Mini-Core Collection in the Virginia-Carolina Region Using Traditional and New High-Throughput MethodsSarkar, Sayantan; Oakes, Joseph; Cazenave, Alexandre-Brice; Burow, Mark D.; Bennett, Rebecca S.; Chamberlin, Kelly D.; Wang, Ning; White, Melanie; Payton, Paxton; Mahan, James; Chagoya, Jennifer; Sung, Cheng-Jung; McCall, David S.; Thomason, Wade E.; Balota, Maria (MDPI, 2022-08-18)Peanut (Arachis hypogaea L.) is an important food crop for the U.S. and the world. The Virginia-Carolina (VC) region (Virginia, North Carolina, and South Carolina) is an important peanut-growing region of the U.S and is affected by numerous biotic and abiotic stresses. Identification of stress-resistant germplasm, along with improved phenotyping methods, are important steps toward developing improved cultivars. Our objective in 2017 and 2018 was to assess the U.S. mini-core collection for desirable traits, a valuable source for resistant germplasm under limited water conditions. Accessions were evaluated using traditional and high-throughput phenotyping (HTP) techniques, and the suitability of HTP methods as indirect selection tools was assessed. Traditional phenotyping methods included stand count, plant height, lateral branch growth, normalized difference vegetation index (NDVI), canopy temperature depression (CTD), leaf wilting, fungal and viral disease, thrips rating, post-digging in-shell sprouting, and pod yield. The HTP method included 48 aerial vegetation indices (VIs), which were derived using red, blue, green, and near-infrared reflectance; color space indices were collected using an octocopter drone at the same time, with traditional phenotyping. Both phenotypings were done 10 times between 4 and 16 weeks after planting. Accessions had yields comparable to high yielding checks. Correlation coefficients up to 0.8 were identified for several Vis, with yield indicating their suitability for indirect phenotyping. Broad-sense heritability (H2) was further calculated to assess the suitability of particular VIs to enable genetic gains. VIs could be used successfully as surrogates for the physiological and agronomic trait selection in peanuts. Further, this study indicates that UAV-based sensors have potential for measuring physiologic and agronomic characteristics measured for peanut breeding, variable rate input application, real time decision making, and precision agriculture applications.
- Exploration of Alternative Approaches to Phenotyping of Late Leaf Spot and Groundnut Rosette Virus Disease for Groundnut BreedingChapu, Ivan; Okello, David Kalule; Okello, Robert C. Ongom; Odong, Thomas Lapaka; Sarkar, Sayantan; Balota, Maria (Frontiers, 2022-06-14)Late leaf spot (LLS), caused by Nothopassalora personata (Berk. & M.A Curt.), and groundnut rosette disease (GRD), [caused by groundnut rosette virus (GRV)], represent the most important biotic constraints to groundnut production in Uganda. Application of visual scores in selection for disease resistance presents a challenge especially when breeding experiments are large because it is resource-intensive, subjective, and error-prone. High-throughput phenotyping (HTP) can alleviate these constraints. The objective of this study is to determine if HTP derived indices can replace visual scores in a groundnut breeding program in Uganda. Fifty genotypes were planted under rain-fed conditions at two locations, Nakabango (GRD hotspot) and NaSARRI (LLS hotspot). Three handheld sensors (RGB camera, GreenSeeker, and Thermal camera) were used to collect HTP data on the dates visual scores were taken. Pearson correlation was made between the indices and visual scores, and logistic models for predicting visual scores were developed. Normalized difference vegetation index (NDVI) (r = -0.89) and red-green-blue (RGB) color space indices CSI (r = 0.76), v* (r = -0.80), and b* (r = -0.75) were highly correlated with LLS visual scores. NDVI (r = -0.72), v* (r = -0.71), b* (r = -0.64), and GA (r = -0.67) were best related to the GRD visual symptoms. Heritability estimates indicated NDVI, green area (GA), greener area (GGA), a*, and hue angle having the highest heritability (H-2 > 0.75). Logistic models developed using these indices were 68% accurate for LLS and 45% accurate for GRD. The accuracy of the models improved to 91 and 84% when the nearest score method was used for LLS and GRD, respectively. Results presented in this study indicated that use of handheld remote sensing tools can improve screening for GRD and LLS resistance, and the best associated indices can be used for indirect selection for resistance and improve genetic gain in groundnut breeding.
- Peanut Leaf Wilting Estimation From RGB Color Indices and Logistic ModelsSarkar, Sayantan; Ramsey, A. Ford; Cazenave, Alexandre-Brice; Balota, Maria (2021-06-18)Peanut (Arachis hypogaea L.) is an important crop for United States agriculture and worldwide. Low soil moisture is a major constraint for production in all peanut growing regions with negative effects on yield quantity and quality. Leaf wilting is a visual symptom of low moisture stress used in breeding to improve stress tolerance, but visual rating is slow when thousands of breeding lines are evaluated and can be subject to personnel scoring bias. Photogrammetry might be used instead. The objective of this article is to determine if color space indices derived from red-green-blue (RGB) images can accurately estimate leaf wilting for breeding selection and irrigation triggering in peanut production. RGB images were collected with a digital camera proximally and aerially by a unmanned aerial vehicle during 2018 and 2019. Visual rating was performed on the same days as image collection. Vegetation indices were intensity, hue, saturation, lightness, a*, b*, u*, v*, green area (GA), greener area (GGA), and crop senescence index (CSI). In particular, hue, a*, u*, GA, GGA, and CSI were significantly (p <= 0.0001) associated with leaf wilting. These indices were further used to train an ordinal logistic regression model for wilting estimation. This model had 90% accuracy when images were taken aerially and 99% when images were taken proximally. This article reports on a simple yet key aspect of peanut screening for tolerance to low soil moisture stress and uses novel, fast, cost-effective, and accurate RGB-derived models to estimate leaf wilting.
- Phenotyping Peanut Drought Stress with Aerial Remote-Sensing and Crop Index DataBalota, Maria; Sarkar, Sayantan; Bennett, Rebecca S.; Burow, Mark D. (MDPI, 2024-04-02)Peanut (Arachis hypogaea L.) plants respond to drought stress through changes in morpho-physiological and agronomic characteristics that breeders can use to improve the drought tolerance of this crop. Although agronomic traits, such as plant height, lateral growth, and yield, are easily measured, they may have low heritability due to environmental dependencies, including the soil type and rainfall distribution. Morpho-physiological characteristics, which may have high heritability, allow for optimal genetic gain. However, they are challenging to measure accurately at the field scale, hindering the confident selection of drought-tolerant genotypes. To this end, aerial imagery collected from unmanned aerial vehicles (UAVs) may provide confident phenotyping of drought tolerance. We selected a subset of 28 accessions from the U.S. peanut mini-core germplasm collection for in-depth evaluation under well-watered (rainfed) and water-restricted conditions in 2018 and 2019. We measured morpho-physiological and agronomic characteristics manually and estimated them from aerially collected vegetation indices. The peanut genotype and water regime significantly (p < 0.05) affected all the plant characteristics (RCC, SLA, yield, etc.). Manual and aerial measurements correlated with r values ranging from 0.02 to 0.94 (p < 0.05), but aerially estimated traits had a higher broad sense heritability (H2) than manual measurements. In particular, CO2 assimilation, stomatal conductance, and transpiration rates were efficiently estimated (R2 ranging from 0.76 to 0.86) from the vegetation indices, indicating that UAVs can be used to phenotype drought tolerance for genetic gains in peanut plants.