Browsing by Author "Sarsour, A.H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effects of a direct fed microbial (DFM) on broiler chickens exposed to acute and chronic cyclic heat stress in two consecutive experimentsSarsour, A.H.; Koltes, D.A.; Kim, E.J.; Persia, Michael E. (Elsevier, 2022)Two consecutive 35 d experiments were conducted to investigate the effects of a multistrain DFM fed continuously to broiler chickens exposed to HS from 28 to 35 d on broiler performance, body composition, ileal digestibility, and intestinal permeability using serum Fluorescein Isothiocyanate Dextran (FITC-d) concentration. The treatments were arranged as a 2 x 2 factorial with temperature: Elevated (HS: 33 ± 2°C for 6 h and 27.7°C for the remaining 18 h from 28 to 35 days of age) and Thermoneutral (TN: 22 to 24°C over the entire 24-h day from 28 to 35 days of age) and diet: cornsoybean meal based with and without DFM (3-strain Bacillus; Enviva PRO) fed over the entire 35-d period as the two factors. Experimental diets were formulated to meet all nutrient recommendations based on breed standards using a starter (0−10 d), grower (10−21 d), and finisher (21−35 d) period. For each of the 2 experiments, 648 Ross 708 broiler chicks were allotted among the treatments with 9 replicate pens of 18 broilers. Data were analyzed as a 2 × 2 factorial within each experiment in JMP 14. In both experiments, cloacal temperatures were increased (P ≤ 0.05) in the broilers subjected to the HS treatment at both 28 d (acute) and 35 d (chronic). Supplementing birds with DFM reduced cloacal temperatures in the Experiment 1 at 28 d, but not at the other time periods. The HS treatment reduced body weight gain and lean tissue accretion from 0 to 35 d in both experiments (P ≤ 0.05). In Experiment 2, when the litter was reused BWG was increased by 36 g/bird with supplementation of DFM (P ≤ 0.05). Ileal digestibility at 28 d (2 h post HS) was improved with DFM supplementation in both experiments (P ≤ 0.05). Serum FITC-d increased with HS at both 28 and 35 d. Serum FITC-d was generally decreased with DFM at 28 d but the response was inconsistent at 35 d. Overall, the results suggest that HS reduced broiler performance and DFM treatment improved intestinal permeability and nutrient digestibility responses to HS in both experiments but did not improve performance until built up litter was used in Experiment 2.
- Effects of sulfur amino acid supplementation on broiler chickens exposed to acute and chronic cyclic heat stressSarsour, A.H.; Persia, Michael E. (Elsevier, 2022)Chronic heat stress can result in oxidative damage from increased reactive oxygen species. One proposed method to alleviate the chronic effects of HS is the supplementation of sulfur amino acids (SAA) which can be metabolized to glutathione, an important antioxidant. Therefore, the objective of this experiment was to determine the effects of dietary SAA content on broiler chickens exposed to HS from 28 to 35 d on broiler performance, body temperature, intestinal permeability, and oxidative status. Four experimental treatments were arranged as a 2 x 2 factorial consisting of HS (6 h at 33.3°C followed by 18 h at 27.8°C from 28 to 35 d of age) and Thermoneutral (TN- 22.2°C continuously from 28 to 35 d) and 2 dietary concentrations of SAA formulated at 100% (0.95, 0.87, and 0.80% for starter, grower, and finisher diets) or 130% SAA (1.24, 1.13, and 1.04% for starter, grower, and finisher diets). A total of 648-dayold, male Ross 708 chicks were placed in 36 pens with 18 chicks/pen and 9 replicates per treatment. Data were analyzed as a 2 £ 2 factorial in JMP 14 (P ≤ 0.05). No interaction effects were observed on broiler live performance (P > 0.05). As expected, HS reduced BWG by 92 g and increased FCR by 11 points from 28 to 35 d of age compared to TN, respectively (P ≤ 0.05). The supplementation of SAA had no effect on live performance (P > 0.05). Cloacal temperatures were increased by 1.7, 1.4, and 1.2°C with HS at 28, 31, and 35 d compared to TN, respectively (P ≤ 0.05) and dietary SAA did not alter cloacal temperatures. At 28 d of age, supplementation of SAA to birds exposed to HS interacted as serum FITC-dextran (an indicator of intestinal permeability) was reduced to that of the TN group (P ≤ 0.05). The interaction was lost at 31 d, but HS still increased intestinal permeability (P ≤ 0.05). By 35 d, broilers were able to adapt to the HS conditions and intestinal permeability was unaffected (P > 0.05). Potential oxidative damage was reduced by increased SAA supplementation as indicated by an improvement in the reduced glutathione to oxidized glutathione ratio of 5 and 45% at 28 (P = 0.08) and 35 d (P ≤ 0.05). These data suggest that intestinal permeability is compromised initially and to at least three d of heat exposure before the bird can adjust. However, oxidative damage in the liver of broilers exposed to HS is more chronic, building over the entire 7 d HS period and increased dietary SAA might have some protective effects on both broiler intestinal permeability and oxidative stress responses to HS.