Browsing by Author "Sathitsuksanoh, Noppadon"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Lignocellulose Saccharification via Cellulose Solvent Based Fractionation Followed by Enzymatic Hydrolysis: the Last Obstacle to Integrated BiorefineriesSathitsuksanoh, Noppadon (Virginia Tech, 2011-08-22)The production of biofuels and biobased products from low-cost abundant renewable non-food lignocellulosic biomass will be vital to sustainable development because it will bring benefits to the environment, the economy, and the national security. The largest technical and economic challenge for emerging biorefineries is cost-effective release of fermentable sugars from recalcitrant structure of lignocellulosic biomass. Cellulose- and organic-solvent-based lignocelluloses fractionation (COSLIF) technology was employed to overcome biomass recalcitrance. Surface response methodology (SRM) showed that optimal COSLIF pretreatment conditions were 85% (w/v) H₃PO₄ and ~50 °C, regardless of moisture contents in biomass from 5-15% (w/w) for common reed. Under these conditions, the pretreated biomass was hydrolyzed fast with high glucan digestibilities at low enzyme loadings (i.e., one FPU of cellulase per gram of glucan). Crystallinity index (CrI) measurements by X-ray diffraction (XRD) and cross polarization/magic angle spinning (CP/MAS) ¹³C nuclear magnetic resonance (NMR), and cellulose accessibility to cellulase (CAC) determinations of COSLIF-pretreated biomass confirmed that highly ordered hydrogen-bonding networks in cellulose fibers of biomass were disrupted through cellulose dissolution in a cellulose solvent. This disruption of hydrogen bonding networks among cellulose chains resulted in a drastic increase in CAC values. Fourier transform infrared (FTIR) analyses on COSLIF-pretreated biomass revealed conformational changes in specific hydrogen bonding among cellulose chains due to COSLIF. While CrI is believed to be a key substrate characteristic that impacts enzymatic cellulose hydrolysis, studies in this thesis showed CrI values varied greatly depending on measurement techniques, calculation approaches, and sample preparation conditions. A correlation between CAC values and glucan digestibility of pretreated biomass showed that substrate accessibility is a key substrate characteristic impacting enzymatic cellulose hydrolysis. In summary, COSLIF can effectively overcome biomass recalcitrance. The resulting pretreated biomass has high CAC values, resulting in fast hydrolysis rates and high enzymatic glucan digestibilities of COSLIF-pretreated biomass at low enzyme usage.
- Overcoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose PretreatmentSathitsuksanoh, Noppadon; Xu, Bin; Zhao, Bingyu Y.; Zhang, Y. H. Percival (2013-09-27)Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. Without pretreatment, no correlation was observed between lignin contents of plant biomass and saccharification efficiency. After dilute acid pretreatment, a strong negative correlation between lignin content of plant samples and overall glucose release was observed, wherein the highest overall enzymatic glucan digestibility was 70% for the low-lignin sample. After cellulose solvent- and organic solvent-based lignocellulose fractionation pretreatment, there was no strong correlation between lignin contents and high saccharification efficiencies obtained (i.e., 80-90%). These results suggest that the importance of decreasing lignin content in plant biomass to saccharification was largely dependent on pretreatment choice and conditions.
- Overexpression of AtLOV1 in Switchgrass Alters Plant Architecture, Lignin Content, and Flowering TimeXu, Bin; Sathitsuksanoh, Noppadon; Tang, Yuhong; Udvardi, Michael K.; Zhang, Ji-Yi; Shen, Zhengxing; Balota, Maria; Harich, Kim; Zhang, Y. H. Percival; Zhao, Bingyu Y. (2012-12-26)Background: Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. Methodology/Principal Findings: In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. Conclusions/Significance: To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.