Browsing by Author "Saylor, Kyle"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Computational mining of MHC class II epitopes for the development of universal immunogenic proteinsSaylor, Kyle; Donnan, Ben; Zhang, Chenming (PLOS, 2022)The human leukocyte antigen (HLA) gene complex, one of the most diverse gene complexes found in the human genome, largely dictates how our immune systems recognize pathogens. Specifically, HLA genetic variability has been linked to vaccine effectiveness in humans and it has likely played some role in the shortcomings of the numerous human vaccines that have failed clinical trials. This variability is largely impossible to evaluate in animal models, however, as their immune systems generally 1) lack the diversity of the HLA complex and/or 2) express major histocompatibility complex (MHC) receptors that differ in specificity when compared to human MHC. In order to effectively engage the majority of human MHC receptors during vaccine design, here, we describe the use of HLA population frequency data from the USA and MHC epitope prediction software to facilitate the in silico mining of universal helper T cell epitopes and the subsequent design of a universal human immunogen using these predictions. This research highlights a novel approach to using in silico prediction software and data processing to direct vaccine development efforts.
- Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine EfficacySaylor, Kyle; Gillam, Francis; Lohneis, Taylor; Zhang, Chenming (2020-02-24)Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.