Browsing by Author "Sayre, Brian L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Arachidonic acid metabolism by early ovine embryos and the role of prostaglandins in one aspect of embryonic developmentSayre, Brian L. (Virginia Tech, 1991)Most embryonal mortality occurs during early embryonic development. Two experiments were designed to study aspects of early embryonic development. Experiment 1 was to determine if early ovine embryos were capable of metabolizing arachidonic acid. Cyclic ewes were estrous synchronized with 6⍺-methyl-17β-hydroxy progesterone acetate (MPA) pessaries, superovulated with follicle stimulating hormone (FSH) and bred artificially. Embryos were collected on d 4, 8, 10, 12 or 14 of pregnancy and incubated with 1 μCi of [¹⁴C] arachidonic acid in an atmosphere of 5% CO₂, 45% O₂ and 50% N at 37°C for 24 h. Embryos from all days of pregnancy metabolized arachidonic acid to a number of compounds. Embryos produced primarily an unidentified polar compound, 6-keto-prostaglandin F₁⍺ (6-keto-PGF₁⍺), prostaglandin F₂⍺ (PGF₂⍺), prostaglandin E₂ (PGE₂), 13,14-dihydro-15-keto prostaglandin F₂⍺ (PGFM), prostaglandin B₂ (PGB₂) and 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). Experiment 2 was to determine whether prostaglandins have a role in embryo hatching from the zona pellucida. Ewes were superovulated and bred artificially, and embryos were collected on d 7 of pregnancy. Embryos were incubated with ethanol (control), indomethacin, PGE₂ or indomethacin and PGE₂ in an atmosphere of 5% CO₂ and 95% air at 37°C for 24 h. Indomethacin appeared to decrease embryo hatching rate (indomethacin, 34.5% vs control, 46.4%). Prostaglandin E₂ appeared to increase embryo hatching rate (PGE₂, 60.0% vs. control, 46.4%). However, hatching rates for indomethacin and PGE₂ treatment groups were not different from control (P > .05). When compared to any group with indomethacin treatment, PGE₂ increased (P < .05) embryo hatching rate. The results of this study indicated that early ovine embryos can convert arachidonic acid to various compounds in vitro. Although not conclusive, indomethacin may decrease and PGE₂ may increase embryo hatching rate. Therefore, embryo-produced prostaglandins may be involved in hatching of sheep embryos from the zona pellucida.
- Oxytocin-induced cervical dilation in sheep: mechanism of action and potential use for nonsurgical artificial inseminationSayre, Brian L. (Virginia Tech, 1995)Exogenous oxytocin aids in the transcervical passage of an AI pipette into the uterus of ewes, and it may be an effective adjunct to sheep AI procedures. Experiments were conducted to evaluate the effects of oxytocin on variables that may affect fertility. The results of this study indicate clearly that oxytocin dilates the cervix in ewes (Exp. 1) without affecting the movement of sperm to the oviducts (Exp. 3) or fertilization rate (Exp. 9). Oxytocin probably binds to uterine and cervical receptors (Exp. 6) and stimulates uterine tetany (Exp. 2) and prostaglandin release (Exp. 5). Because of the irregular arrangement of smooth muscle in the sheep cervix (Exp. 4), uterine tetany may physically dilate the cervix. Also, prostaglandin synthesis, primarily PGF2, may be involved in a chemical softening of the cervix. Most likely, a combination of uterine contractions and cervical softening allow dilation and transcervical passage of an AI pipette. Although oxytocin does not affect sperm transport (Exp. 3) or fertilization (Exp. 9), fertility after transcervical AI is decreased (Exp. 8). Cervical manipulation seems to decrease fertility, but the mechanism is unclear. Therefore, a greater understanding of the physiology of the sheep cervix is necessary before oxytocin-induced cervical dilation can be implemented with nonsurgical AI procedures in sheep.