Browsing by Author "Sedlakova, Zdenka"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dynamic Mechanical And Thermal Behavior Of Novel Liquid-Crystalline Polybutadiene-Diols with Azobenzene Groups in Side ChainsPoláková, Lenka; Sedlakova, Zdenka; Benes, Hynek; Valentova, Helena; Krakovsky, Ivan; Rabie, Feras (AIP Publishing, 2013-09-01)Liquid-crystalline (LC) polymers containing methoxy-or butoxy-substituted azobenzene in side chains have been prepared via radical addition of the in advance synthesized nematic thiols onto double bonds of poly(butadiene) diol [Polakova et al., Pol. Bull. 54, 315-326 (2010)]. In the present work, thermal behavior of these comblike polymers has been characterized by differential scanning calorimetry and polarizing optical microscopy. LC transitions have been also determined by rheological measurement. Time-temperature superposition of mechanical functions has been successfully applied to samples undergoing direct nematic/glassy state transition. (C) 2013 The Society of Rheology.
- Synthesis, Characterization, Membrane Fabrication and Gas Transport Behavior of Liquid Crystal Polymer MaterialsRabie, Feras H. (Virginia Tech, 2013-11-08)A variety of liquid crystalline (LC) materials have been examined as potential membrane separation materials. The order present in the LC phases has measurable effects on solute sorption, diffusivity, permeability, and selectivity, and can thus be used to tune the transport and separation of different species. The current work has focused on polymer dispersed liquid crystal (PDLC), linear butadiene diol based side chain liquid crystalline polymer (LCP), and linear and crosslinked acrylate based LCP membranes. The focus was primarily on the separation of propylene and propane, a separation of significant industrial interest that is not easily achieved with current membrane technology. Polysulfone (Psf) and 4-cyano-4'-octylbiphenyl (8CB) were used to fabricate polymer dispersed liquid crystal (PDLC) membranes. Permeation properties for propane and propylene through polysulfone membranes with increasing LC concentrations were measured at temperatures above and below the glass transition temperature and in several LC phases. The plasticization of PSf by 8CB increased permeability and selectivity with increasing temperatures below the Tg, and membranes with higher LC concentrations exhibited a higher mixed gas permeability and selectivity for propylene. Permeability selectivity decreased across the smectic to nematic phase transition. Overall, selectivities were low, and membrane stability was a significant problem, especially at higher pressures. Thus, several LCP systems were studies as candidates for membrane gas separations. A side chain liquid crystalline poly(butadiene)diol with cyanobiphenyl mesogens was impregnated in a porous PTFE support for gas transport studies. Single gas sorption for propane and propylene in the LCP were investigated in the smectic A mesophase. Gas transport in the glassy state showed separation dominated by differences in gas diffusivity. Permeabilities and selectivities for propylene/propane in the liquid crystal mesophase increased with increasing temperature due to an increase in the segmental motional of the mesogenic units which facilitated solubility of propylene over propane. In addition, an increase solubility differences between propane and propylene were observed with an increase in feed pressure. Mixed gas permeability measurements resulted in an increase in selectivity both below and above the glass transition temperature due to competitive sorption of the two gases. The thermal behavior of liquid crystalline poly(butadiene)diols (PBDs) containing methoxy- or butoxy-substituted azobenzene side chains was studied. A strong dependence of the viscous and dynamic moduli of the polymer with respect to frequency and degree of modification was observed, but the results suggested that prolonged membrane stability for linear poly(butadiene)diol LCPs would be difficult to achieve. As a result, a new class of cross-linkable acrylate based side-chain LCPs was developed. A mesogenic cyanobiphenyl based acrylate monomer, in combination with a non-mesogenic comonomers and a cross-linking agent, was used was used to fabricate stable cross-linked LCP films for membrane separation applications using an in situ free radical polymerization technique with UV initiation. To our knowledge, this is the first reported example of a crosslinked LCP membrane. Increasing the cross-linker content resulted in a decrease in mesogen order. At temperatures in the LC mesophase permeability selectivity for propylene over propane was derived from both solubility and diffusivity selectivity and was higher for the membrane with lower crosslinker content. An increase in the temperature causes a decrease in molecular ordering and consequently decreased permeability selectivity. At temperatures approaching the nematic/isotropic transition and above, the membrane with higher crosslinker content exhibited higher propylene selectivity. Mixed gas studies of propylene/propane resulted in higher selectivities compared to the single gas runs due to the decrease of propane permeability by the presence of propylene.
- Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate MembranesRabie, Feras; Poláková, Lenka; Fallas, Sebastian; Sedlakova, Zdenka; Marand, Eva; Martin, Stephen M. (MDPI, 2019-08-20)Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. The phase behavior of the LCP membranes was characterized using differential scanning calorimetry (DSC) and X-ray scattering, and indicated the formation of a nematic liquid crystalline (LC) phase above the glass transition temperature. The single gas transport behavior of CO2, CH4, propane, and propylene in the cross-linked LCP membranes was investigated for a range of temperatures in the LC mesophase and the isotropic phase. Solubility of the gases was dependent not only on the condensability in the LC mesophase, but also on favorable molecular interactions of penetrant gas molecules exhibiting a charge separation, such as CO2 and propylene, with the ordered polar mesogenic side chains of the LCP. Selectivities for various gas pairs generally decreased with increasing temperature and were discontinuous across the nematic–sotropic transition. Sorption behavior of CO2 and propylene exhibited a significant change due to a decrease in favorable intermolecular interactions in the disordered isotropic phase. Higher cross-link densities in the membrane generally led to decreased selectivity at low temperatures when the main chain motion was limited by the lack of mesogen mobility in the ordered nematic phase. However, at higher temperatures, increasing the cross-link density increased selectivity as the cross-links acted to limit chain mobility. Mixed gas permeation measurements for propylene and propane showed close agreement with the results of the single gas permeation experiments.