Browsing by Author "Senatore, Alfonso"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Hierarchical climate-driven dynamics of the active channel length in temporary streamsBotter, Gianluca; Vingiani, Filippo; Senatore, Alfonso; Jensen, Carrie K.; Weiler, Markus; McGuire, Kevin J.; Mendicino, Giuseppe; Durighetto, Nicola (Springer, 2021-12)Looking across a landscape, river networks appear deceptively static. However, flowing streams expand and contract following ever-changing hydrological conditions of the surrounding environment. Despite the ecological and biogeochemical value of rivers with discontinuous flow, deciphering the temporary nature of streams and quantifying their extent remains challenging. Using a unique observational dataset spanning diverse geomorphoclimatic settings, we demonstrate the existence of a general hierarchical structuring of river network dynamics. Specifically, temporary stream activation follows a fixed and repeatable sequence, in which the least persistent sections activate only when the most persistent ones are already flowing. This hierarchical phenomenon not only facilitates monitoring activities, but enables the development of a general mathematical framework that elucidates how climate drives temporal variations in the active stream length. As the climate gets drier, the average fraction of the flowing network decreases while its relative variability increases. Our study provides a novel conceptual basis for characterizing temporary streams and quantifying their ecological and biogeochemical impacts.
- Probabilistic Description of Streamflow and Active Length Regimes in RiversDurighetto, Nicola; Mariotto, Veronica; Zanetti, Francesca; McGuire, Kevin J.; Mendicino, Giuseppe; Senatore, Alfonso; Botter, Gianluca (American Geophysical Union, 2022-04-01)In spite of the prevalence of temporary rivers over a wide range of climatic conditions, they represent a relatively understudied fraction of the global river network. Here, we exploit a well-established hydrological model and a derived distribution approach to develop a coupled probabilistic description for the dynamics of the catchment discharge and the corresponding active network length. Analytical expressions for the flow duration curve (FDC) and the stream length duration curve (SLDC) were derived and used to provide a consistent classification of streamflow and active length regimes in temporary rivers. Two distinct streamflow regimes (persistent and erratic) and three different types of active length regimes (ephemeral, perennial, and ephemeral de facto) were identified depending on the value of two dimensionless parameters. These key parameters, which are related to the underlying streamflow fluctuations and the sensitivity of active length to changes in the catchment discharge (here quantified by the scaling exponent b), originate seven different behavioral classes characterized by contrasting shapes of the underlying SLDCs and FDCs. The analytical model was tested using data gathered in three study catchments located in Italy and USA, with satisfactory model performances in most cases. Our analytical and empirical results show the existence of a structural relationship between streamflow and active length regimes, which is chiefly modulated by the scaling exponent b. The proposed framework represents a promising tool for the coupled analysis of discharge and river network length dynamics in temporary streams.