Browsing by Author "Seol, Young-Joon"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function RestorationKim, Ji Hyun; Seol, Young-Joon; Ko, In Kap; Kang, Hyun-Wook; Lee, Young Koo; Yoo, James J.; Atala, Anthony; Lee, Sang Jin (Springer Nature, 2018-08-17)A bioengineered skeletal muscle tissue as an alternative for autologous tissue flaps, which mimics the structural and functional characteristics of the native tissue, is needed for reconstructive surgery. Rapid progress in the cell-based tissue engineering principle has enabled in vitro creation of cellularized muscle-like constructs; however, the current fabrication methods are still limited to build a three-dimensional (3D) muscle construct with a highly viable, organized cellular structure with the potential for a future human trial. Here, we applied 3D bioprinting strategy to fabricate an implantable, bioengineered skeletal muscle tissue composed of human primary muscle progenitor cells (hMPCs). The bioprinted skeletal muscle tissue showed a highly organized multi-layered muscle bundle made by viable, densely packed, and aligned myofiber-like structures. Our in vivo study presented that the bioprinted muscle constructs reached 82% of functional recovery in a rodent model of tibialis anterior (TA) muscle defect at 8 weeks of post-implantation. In addition, histological and immunohistological examinations indicated that the bioprinted muscle constructs were well integrated with host vascular and neural networks. We demonstrated the potential of the use of the 3D bioprinted skeletal muscle with a spatially organized structure that can reconstruct the extensive muscle defects.
- Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platformSkardal, Aleksander; Murphy, Sean V.; Devarasetty, Mahesh; Mead, Ivy; Kang, Hyun-Wook; Seol, Young-Joon; Zhang, Yu Shrike; Shin, Su-Ryon; Zhao, Liang; Aleman, Julio; Hall, Adam R.; Shupe, Thomas D.; Kleensang, Andre; Dokmeci, Mehmet R.; Lee, Sang Jin; Jackson, John D.; Yoo, James J.; Hartung, Thomas; Khademhosseini, Ali; Soker, Shay; Bishop, Colin E.; Atala, Anthony (Springer Nature, 2017-08-18)Many drugs have progressed through preclinical and clinical trials and have been available - for years in some cases -before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.