Browsing by Author "Shao, Huijuan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Forecasting the Flu: Designing Social Network Sensors for EpidemicsShao, Huijuan; Hossain, K.S.M. Tozammel; Wu, Hao; Khan, Maleq; Vullikanti, Anil Kumar S.; Prakash, B. Aditya; Marathe, Madhav V.; Ramakrishnan, Naren (Virginia Tech, 2016-03-08)Early detection and modeling of a contagious epidemic can provide important guidance about quelling the contagion, controlling its spread, or the effective design of countermeasures. A topic of recent interest has been to design social network sensors, i.e., identifying a small set of people who can be monitored to provide insight into the emergence of an epidemic in a larger population. We formally pose the problem of designing social network sensors for flu epidemics and identify two different objectives that could be targeted in such sensor design problems. Using the graph theoretic notion of dominators we develop an efficient and effective heuristic for forecasting epidemics at lead time. Using six city-scale datasets generated by extensive microscopic epidemiological simulations involving millions of individuals, we illustrate the practical applicability of our methods and show significant benefits (up to twenty-two days more lead time) compared to other competitors. Most importantly, we demonstrate the use of surrogates or proxies for policy makers for designing social network sensors that require from nonintrusive knowledge of people to more information on the relationship among people. The results show that the more intrusive information we obtain, the longer lead time to predict the flu outbreak up to nine days.
- Temporal Mining Approaches for Smart Buildings ResearchShao, Huijuan (Virginia Tech, 2017-01-30)With the advent of modern sensor technologies, significant opportunities have opened up to help conserve energy in residential and commercial buildings. Moreover, the rapid urbanization we are witnessing requires optimized energy distribution. This dissertation focuses on two sub-problems in improving energy conservation; energy disaggregation and occupancy prediction. Energy disaggregation attempts to separate the energy usage of each circuit or each electric device in a building using only aggregate electricity usage information from the meter for the whole house. The second problem of occupancy prediction can be accomplished using non-invasive indoor activity tracking to predict the locations of people inside a building. We cast both problems as temporal mining problems. We exploit motif mining with constraints to distinguish devices with multiple states, which helps tackle the energy disaggregation problem. Our results reveal that motif mining is adept at distinguishing devices with multiple power levels and at disentangling the combinatorial operation of devices. For the second problem we propose time-gap constrained episode mining to detect activity patterns followed by the use of a mixture of episode generating HMM (EGH) models to predict home occupancy. Finally, we demonstrate that the mixture EGH model can also help predict the location of a person to address non-invasive indoor activities tracking.