Browsing by Author "Shea, Amanda A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- The Impact of Adipose-Associated Stromal Cells on the Metastatic Potential of Ovarian CancerShea, Amanda A. (Virginia Tech, 2014-01-22)Obesity is a major global health concern due to its steadily increasing rates and significant contribution to numerous diseases, including cancer. Ovarian cancer specifically, is associated with a 30% increased risk with obesity, although the mechanisms for this are unknown. Waist-to-hip ratio has been especially associated with ovarian cancer, suggesting that visceral fat may be the greatest contributor. Here, we investigated individual visceral fat depots as independent contributors to cancer progression, specifically focusing on adipose tissue-derived stem and progenitor cells, which have previously been shown to be recruited by cancer cells and participate in cancer progression. We confirmed that ovarian cancer tumor burden was indeed significantly increased in mice on a high fat as compared to low fat diet. To further investigate mechanisms, we examined changes in progenitor populations that occurred in intra-abdominal parametrial (pmWAT), retroperitoneal (rpWAT), and omental (omWAT) white adipose tissue (WAT) depots with cancer presence. The greatest tumor burden was evident in omWAT, which also displayed an increase in CD45- cells but a decrease in adipose progenitor cells (APC) and endothelial progenitor cells, suggesting that there was an increase in stromal cells, but that the stem cells were pushed towards differentiation. PmWAT and rpWAT showed remarkably stable progenitor populations. However, a tumor from pmWAT had a significant presence of CD45- cells, actually matching that of its surrounding tissue and differing from the omWAT tumors, indicating that microenvironment has a major influence on tumor stromal cells. We also found that with high fat diet, many cancer-associated changes were exacerbated, such as an increased inflammatory response in all tissues and further decreases in APCs in omWAT. In vitro studies further confirmed that ovarian cancer cells and SVF cells were able to directly interact. Additionally, SVF cells were able to increase the proliferation, mobility, and invasiveness of cancer cells. Conversely, co-culturing also enhanced the proliferation and mobility of SVF cells, providing further evidence that SVF cells may be recruited by cancer cells and that their relationship may be bilateral. Thus, this study provides a good foundation for examining the cellular contributions of adipose tissue to cancer. By further characterizing the mechanism for the association between obesity and cancer development, we could find novel targets to decrease the progress of cancer development in at-risk obese individuals.
- Intra-Abdominal Fat Depots Represent Distinct Immunomodulatory Microenvironments: A Murine ModelCohen, Courtney A.; Shea, Amanda A.; Heffron, C. Lynn; Schmelz, Eva M.; Roberts, Paul C. (PLOS, 2013-06-12)White adipose tissue (WAT) is a multi-faceted endocrine organ involved in energy storage, metabolism, immune function and disease pathogenesis. In contrast to subcutaneous fat, visceral fat (V-WAT) has been associated with numerous diseases and metabolic disorders, indicating specific functions related to anatomical location. Although visceral depots are often used interchangeably in V-WAT-associated disease studies, there has been a recent subdivision of V-WAT into “true visceral” and non-visceral intra-abdominal compartments. These were associated with distinct physiological roles, illustrating a need for depot-specific information. Here, we use FACS analysis to comparatively characterize the leukocyte and progenitor populations in the stromal vascular fraction (SVF) of peritoneal serous fluid (PSF), parametrial (pmWAT), retroperitoneal (rpWAT), and omental (omWAT) adipose tissue from seven-month old C57BL/6 female mice. We found significant differences in SVF composition between all four microenvironments. PSF SVF was comprised almost entirely of CD45+ leukocytes (>99%), while omWAT contained less, but still almost two-fold more leukocytes than pmWAT and rpWAT (75%, 38% and 38% respectively; p<0.01). PmWAT was composed primarily of macrophages, whereas rpWAT more closely resembled omWAT, denoted by high levels of B1 B-cell and monocyte populations. Further, omWAT harbored significantly higher proportions of T-cells than the other tissues, consistent with its role as a secondary lymphoid organ. These SVF changes were also reflected in the gene expression profiles of the respective tissues. Thus, intra-abdominal fat pads represent independent immunomodulatory microenvironments and should be evaluated as distinct entities with unique contributions to physiological and pathological processes.
- The Parity-Associated Microenvironmental Niche in the Omental Fat Band Is Refractory to Ovarian Cancer MetastasisCohen, Courtney A.; Shea, Amanda A.; Heffron, C. Lynn; Schmelz, Eva M.; Roberts, Paul C. (American Association for Cancer Research, 2013-09-10)Ovarian cancer is an insidious and aggressive disease of older women, typically undiscovered prior to peritoneal metastasis due to its asymptomatic nature and lack of early detection tools. Epidemiological studies suggest that child-bearing (parity) is associated with decreased ovarian cancer risk, although the molecular mechanisms responsible for this phenomenon have not been delineated. Ovarian cancer preferentially metastasizes to the omental fat band (OFB), a secondary lymphoid organ that aids in filtration of the peritoneal serous fluid (PSF) and helps combat peritoneal infections. In the present study we assessed how parity and age impact the immune compositional profile in the OFB of mice, both in the homeostatic state and as a consequence of peritoneal implantation of ovarian cancer. Using fluorescence-activated cell sorting analysis and quantitative realtime PCR, we found that parity was associated with a significant reduction in omental monocytic subsets and B1-B lymphocytes, correlating with reduced homeostatic expression levels of key chemoattractants and polarization factors (Ccl1, Ccl2, Arg1, Cxcl13). Of note, parous animals exhibited significantly reduced tumor burden following intraperitoneal implantation compared to nulliparous animals. This was associated with a reduction in tumor-associated neutrophils and macrophages, as well as in the expression levels of their chemoattractants (Cxcl1, Cxcl5) in the OFB and PSF. These findings define a pre-existing "parity-associated microenvironmental niche" in the OFB that is refractory to metastatic tumor seeding and outgrowth. Future studies designed to manipulate this niche may provide a novel means to mitigate peritoneal dissemination of ovarian cancer.