Browsing by Author "Shehata, Nader"
Now showing 1 - 20 of 32
Results Per Page
Sort Options
- Acoustic Energy Harvesting and Sensing via Electrospun PVDF Nanofiber MembraneShehata, Nader; Hassanin, Ahmed H.; Elnabawy, Eman; Nair, Remya; Bhat, Sameer A.; Kandas, Ishac (MDPI, 2020-05-31)This paper introduces a new usage of piezoelectric poly (vinylidene fluoride) (PVDF) electrospun nanofiber (NF) membrane as a sensing unit for acoustic signals. In this work, an NF mat has been used as a transducer to convert acoustic signals into electric voltage outcomes. The detected voltage has been analyzed as a function of both frequency and amplitude of the excitation acoustic signal. Additionally, the detected AC signal can be retraced as a function of both frequency and amplitude with some wave distortion at relatively higher amplitudes and within a certain acoustic spectrum region. Meanwhile, the NFs have been characterized through piezoelectric responses, beta sheet calculations and surface morphology. This work is promising as a low-cost and innovative solution to harvest acoustic signals coming from wide resources of sound and noise.
- Biodegradable Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19 and Anti-Multidrug Resistant Bacteria EvaluationAlshabanah, Latifah Abdullah; Hagar, Mohamed; Al-Mutabagani, Laila A.; Abozaid, Ghada M.; Abdallah, Salwa M.; Ahmed, Hoda; Hassanin, Ahmed H.; Shehata, Nader (MDPI, 2021-07-10)Biodegradable nanofibrous hybrid membranes of polyvinyl alcohol (PVA) with ZnO and CuO nanoparticles were manufactured and characterized, and their anti-COVID-19 and anti-multidrug resistant bacteria activities were also evaluated. The morphological structures of the prepared PVA composites nanofibers were observed by scanning electron microscope (SEM), which revealed a homogenous pattern of the developed nanofibers, with an average fibrous diameter of 200–250 nm. Moreover, the results of the SEM showed that the fiber size changed with the type and the concentration of the metal oxide. Moreover, the antiviral and antibacterial potential capabilities of the developed nanofibrous membranes were tested in blocking the viral fusion of SARS-COV-2, as a representative activity for COVID-19 deactivation, as well as for their activity against a variety of bacterial strains, including multi-drug resistant bacteria (MDR). The results revealed that ZnO loaded nanofibers were more potent antiviral agents than their CuO analogues. This antiviral action was attributed to the fact that inorganic metallic compounds have the ability to extract hydrogen bonds with viral proteins, causing viral rupture or morphological changes. On the other hand, the anti-multi-drug resistant activity of the prepared nanofibers was also evaluated using two techniques; the standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions and the standard test method for determining the activity of incorporated antimicrobial agents in polymeric or hydrophobic materials. Both techniques proved the superiority of the ZnO loaded nanofibers over the CuO loaded fibers. The results of the antiviral and antibacterial tests showed the effectiveness of such nanofibrous formulas, not only for medical applications, but also for the production of personal protection equipment, such as gowns and textiles.
- Decay Rates of Plasmonic Elliptical Nanostructures via Effective Medium TheoryGamal, Mohammed; Kandas, Ishac; Badran, Hussein; Hajjiah, Ali; Muhammed, Mufasila; Shehata, Nader (MDPI, 2021-07-27)This paper investigates the spontaneous decay rate of elliptical plasmonic nanostructures. The refractive index was analyzed using the effective medium theory (EMT). Then, the polarizability, spontaneous radiative, non-radiative decay rate, and electric field enhancement factor were characterized for the targeted elliptical nanostructures at different aspect ratios. All of the optical analyses were analyzed at different distances between the excited fluorescent coupled atom and the plasmonic nanostructure (down to 100 nm). This work is promising in selecting the optimum elliptical nanostructure according to the required decay rates for optical conversion efficiency control in energy harvesting for solar cells and optical sensing applications.
- Design of optical characteristics of ceria nanoparticles for applications including gas sensing and up-conversionShehata, Nader (Virginia Tech, 2012-12-13)This thesis investigates the impact of doping on the optical and structural characteristics of cerium oxide (ceria) nanoparticles synthesized using chemical precipitation. The dopants selected are samarium and neodymium, which have positive association energy with oxygen vacancies in the ceria host, and negative association lanthanides, holmium and erbium, as well as two metal dopants, aluminum and iron. Characteristics measured are absorption and fluorescence spectra and the diameter and lattice parameter of ceria. Analysis of the characteristics indicates qualitatively that the dopant controls the O-vacancy concentration and the ratio of the two cerium ionization states: Ce+3 and Ce+4. A novel conclusion is proposed that the negative association lanthanide dopants can act as O-vacancies scavengers in ceria while the O-vacancy concentration increases in ceria doped with positive association lanthanide elements. Doped ceria nanoparticles are evaluated in two applications: dissolved oxygen (DO) sensing and up-conversion. In the first application, ceria doped with either Sm or Nd and ceria doped with aluminum have a strong correlation between the fluorescence quenching with the DO concentration in the aqueous solution in which the ceria nanoparticles are suspended. Stern-Volmer constants (KSV) of doped ceria are found to strongly depend upon the O-vacancy concentration and are larger than some of the fluorescent molecular probes currently used to measure DO. The KSV measured between 25-50oC is found to be significantly less temperature dependent as compared to the constants of commercially-available DO molecular probes. In the second application, up-conversion, ceria nanoparticles doped with erbium and an additional lanthanide, either Sm or Nd, are exposed to IR radiation at 780 nm. Visible emission is only observed after the nanoparticles are calcinated at high temperature, greatly diminishing the concentration of O-vacancies. It is concluded that O-vacancies do not play a dominant role in up-conversion, unlike that drawn for down-conversion, where the fluorescence intensity is strongly correlated with the O-vacancy concentration. Correlations between annealing temperatures, dopant, and dopant concentrations with the power dependence of up-conversion on the pump and the origin of the intensities of the visible emission are presented. These studies show the promise of doped ceria nanoparticles.
- Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation StudyHajjiah, Ali; Kandas, Ishac; Shehata, Nader (MDPI, 2018-09-05)Recently, hybrid organic-inorganic perovskites have been extensively studied due to their promising optical properties with relatively low-cost and simple processing. However, the perovskite solar cells have some low optical absorption in the visible spectrum, especially around the red region. In this paper, an improvement of perovskite solar cell efficiency is studied via simulations through adding plasmonic nanoparticles (NPs) at the rear side of the solar cell. The plasmonic resonance wavelength is selected to be very close to the spectrum range of lower absorption of the perovskite: around 600 nm. Both gold and silver nanoparticles (Au and Ag NPs) are selected to introduce the plasmonic effect with diameters above 40 nm, to get an overlap between the plasmonic resonance spectrum and the requested lower absorption spectrum of the perovskite layer. Simulations show the increase in the short circuit current density (Jsc) as a result of adding Au and Ag NPs, respectively. Enhancement in Jsc is observed as the diameter of both Au and Ag NPs is increased beyond 40 nm. Furthermore, there is a slight increase in the reflection loss as the thickness of the plasmonic nanoparticles at the rear side of the solar cell is increased. A significant decrease in the current loss due to transmission is achieved as the size of the nanoparticles increases. As a comparison, slightly higher enhancement in external quantum efficiency (EQE) can be achieved in case of adding Ag NPs rather than Au NPs.
- Efficient Design of Flexible and Low Cost Paper-Based Inkjet-Printed AntennaMansour, A. M.; Shehata, Nader; Hamza, B. M.; Rizk, M. R. M. (Hindawi, 2015-09-29)A new, efficient, flexible, and cheap antenna designed at 1.57 GHz microstrip patch antenna based on simple inkjet printer with improved performance using silver nanoparticles ink is developed. The antenna is printed on a kind of flexible substrate “glossy paper,” to offer the advantage of light and flexibility for different applications. The performance of silver nanoparticles ink has been studied through inkjet printing versus postsynthesis annealing and multilayer printing. The conductivity has been improved to have promising values up to 2 Ω/cm at temperatures up to 180°C. The surface morphology of the circuits has been analyzed using SEM with mean diameter of the nanoparticles around 100 nm, uniform surface distribution, and mean thickness of the printed layer around 230 microns. Also, a simple design of a coplanar waveguide (CPW) monopole Z-shaped antenna has been considered as an application of fabricated printed antenna using the studied silver nanoparticles ink through a cheap printer.
- Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria EvaluationAlshabanah, Latifah Abdullah; Omran, Nada; Elwakil, Bassma H.; Hamed, Moaaz T.; Abdallah, Salwa M.; Al-Mutabagani, Laila A.; Wang, Dong; Liu, Qiongzhen; Shehata, Nader; Hassanin, Ahmed H.; Hagar, Mohamed (MDPI, 2021-11-18)Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the metal oxide concentration up to 83% reduction rate by using TPU/ZnO 4% nanofibers against K. pneumoniae strain 10. The bacterial growth was completely eradicated after 8 and 16 h incubation with TPU/ZnO and TPU/CuO nanofibers, respectively. The nanofibers SEM study reveals the adsorption of the bacterial cells on the metal oxides nanofibers surface which led to cell lysis and releasing of their content. Finally, in vitro study against Spike S-protein from SARS-CoV-2 was also evaluated to investigate the potent effectiveness of the proposed nanofibers in the virus deactivation. The results showed that the metal oxide concentration is an effective factor in the antiviral activity due to the observed pattern of increasing the antibacterial and antiviral activity by increasing the metal oxide concentration; however, TPU/ZnO nanofibers showed a potent antiviral activity in relation to TPU/CuO.
- Electrospun PVA Polymer Embedded with Ceria Nanoparticles as Silicon Solar Cells Rear Surface Coaters for Efficiency ImprovementSamir, Effat; Salah, Mohamed; Hajjiah, Ali; Shehata, Nader; Fathy, Marwa; Hamed, Aya (MDPI, 2018-06-04)This paper introduces electrospun nanofibers embedded with ceria nanoparticles as silicon solar cells coaters, showing their influence on the solar cells efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce4+ state ions to the Ce3+ ones. These O-vacancies follow the rule of improving silicon solar cellconductivity through the hopping mechanism. Besides, under violet excitation, the reduced trivalent cerium Ce3+ ions are directly responsible for down-converting the un-absorbed violet or ultra-violet (UV) wavelengths to a resulted green fluorescence emission at ~520 nm. These are absorbed through the silicon solar cells active layer. When electrospun Poly(vinyl alcohol) (PVA) is embedded with ceria nanoparticles on the rear surface of silicon solar cell, a promising enhancement in the behavior of solar cells current–voltage (I–V) curve is observed. The efficiency has improved by about 24% of its initial value due to the mutual impact of improving both electrical conductivity and optical conversions from the higher surface-to-volume ratio of electrospun nanofibers embedded by ceria nanoparticles. The solar cell efficiency improvement is due to the mutual impact of both optical down-conversion and better electric paths via the used nanocomposite. The added nanostructures coating can utilize part of the transmitted UV or violet spectrum through the cell as optical conversion from violet to the visible region. In addition, the formed active tri-valent states are associated with O-vacancies which can help in a better conductivity of the generated photoelectrons from the cell through the hopping mechanism. The PVA nanofibers host offers a better distribution of ceria nanoparticles and better conductivity paths for the photoelectrons based on the better surface-to-volume ratio of the nanofibers.
- Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for RadicalsShehata, Nader; Samir, Effat; Gaballah, Soha; Hamed, Aya; Elrasheedy, Asmaa (MDPI, 2016-08-26)This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce3+ ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications.
- Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell PerformanceShehata, Nader; Clavel, Michael B.; Meehan, Kathleen; Samir, Effat; Gaballah, Soha; Salah, Mohamed (MDPI, 2015-11-12)This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs) as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.
- Enhancement of Nano-Biopolymer Antibacterial Activity by Pulsed Electric FieldsEl-Kaliuoby, Mai. I.; Amer, Motaz; Shehata, Nader (MDPI, 2021-06-04)Chronic wounds are commonly colonized with bacteria in a way that prevents full healing process and capacity for repair. Nano-chitosan, a biodegradable and nontoxic biopolymer, has shown bacteriostatic activity against a wide spectrum of bacteria. Effectively, pulsed electromagnetic fields are shown to have both wound healing enhancement and antibacterial activity. This work aimed to combine the use of nano-chitosan and exposure to a pulsed electric field to overcome two common types of infectious bacteria, namely P. aeruginosa and S. aureus. Here, bacteria growing rate, growth kinetics and cell cytotoxicity (levels of lactate dehydrogenase, protein leakage and nucleic acid leakage) were investigated. Our findings confirmed the maximum antibacterial synergistic combination of nano-chitosan and exposure against P. aeruginosa than using each one alone. It is presumed that the exposure has influenced bacteria membrane charge distribution in a manner that allowed more chitosan to anchor the surface and enter inside the cell. Significantly, cell cytotoxicity substantiates high enzymatic levels as a result of cell membrane disintegration. In conclusion, exposure to pulsed electromagnetic fields has a synergistic antibacterial effect against S. aureus and P. aeruginosa with maximum inhibitory effect for the last one. Extensive work should be done to evaluate the combination against different bacteria types to get general conclusive results. The ability of using pulsed electromagnetic fields as a wound healing accelerator and antibacterial cofactor has been proved, but in vivo experimental work in the future to verify the use of such a new combination against infectious wounds and to determine optimum treatment conditions is a must.
- Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun NanofibersShehata, Nader; Gaballah, Soha; Samir, Effat; Hamed, Aya; Saad, Marwa (MDPI, 2016-06-01)This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria) nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging.
- Gold/QDs-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement as a Quenching SensorShehata, Nader; Samir, Effat; Kandas, Ishac (MDPI, 2020-02-12)This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found that in-situ Au NPs of a 530 nm plasmonic resonance wavelength provides the highest fluorescence emissions of ceria NPs compared to other embedded plasmonic structures. In addition to the optical coupling between plasmonic resonance of Au with the visible emissions fluorescence spectrum of ceria nanoparticles, the 530 nm in-situ Au NPs were found to reduce the bandgap of ceria NPs. We suggest that the formation of more tri-valent cerium ions traps energy levels along with more associated oxygen vacancies, which is responsible for increasing the fluorescence visible emissions intensity caused by ceria. As an application, the gold-ceria NPs is shown to optically detect the varied concentration of iron tiny particles in aqueous medium based on a fluorescence quenching mechanism. This work is promising in different applications such as biomarkers, cancer treatments, and environmental pollution monitoring.
- Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial AssessmentsAlshabanah, Latifah Abdullah; Hagar, Mohamed; Al-Mutabagani, Laila A.; Abozaid, Ghada M.; Abdallah, Salwa M.; Shehata, Nader; Ahmed, Hoda; Hassanin, Ahmed H. (MDPI, 2021-05-28)In this research work, nanofibrous hybrids are manufactured, characterized, and assessed as active antiviral and antibacterial membranes. In more detail, both polyvinyl alcohol (PVA) and thermoplastic polyurethane (TPU) nanofibrous (NF) membranes and their composites with embedded silver nanoparticles (Ag NPs) are manufactured by an electrospinning process. Their morphological structures have been investigated by a scanning electron microscope (SEM) which revealed a homogenous distribution and almost beads-free fibers in all manufactured samples. Characterization with spectroscopic tools has been performed and proved the successful manufacturing of Ag-incorporated PVA and TPU hybrid nanofibers. The crystalline phase of the nanofibers has been determined using an X-ray diffractometer (XRD) whose patterns showed their crystalline nature at an angle value (2θ) of less than 20°. Subsequent screening of both antiviral and antibacterial potential activities of developed nanohybrid membranes has been explored against different viruses, including SARS-Cov-2 and some bacterial strains. As a novel approach, the current work highlights potential effects of several polymeric hybrids on antiviral and antibacterial activities particularly against SARS-Cov-2. Moreover, two types of polymers have been tested and compared; PVA of excellent biodegradable and hydrophilic properties, and TPU of excellent mechanical, super elasticity, hydrophobicity, and durability properties. Such extreme polymers can serve a wide range of applications such as PPE, filtration, wound healing, etc. Consequently, assessment of their antiviral/antibacterial activities, as host matrices for Ag NPs, is needed for different medical applications. Our results showed that TPU-Ag was more effective than PVA-Ag as HIV-1 antiviral nanohybrid as well as in deactivating spike proteins of SARS-Cov-2. Both TPU-Ag and PVA-Ag nanofibrous membranes were found to have superior antimicrobial performance by increasing Ag concentration from 2 to 4 wt.%. Additionally, the developed membranes showed acceptable physical and mechanical properties along with both antiviral and antibacterial activities, which can enable them to be used as a promising functional layer in Personal Protective Equipment (PPE) such as (surgical gowns, gloves, overshoes, hair caps, etc.). Therefore, the developed functional membranes can support the decrease of both coronavirus spread and bacterial contamination, particularly among healthcare professionals within their workplace settings.
- In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved OxygenShehata, Nader; Kandas, Ishac; Samir, Effat (MDPI, 2020-02-12)Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO quencher detection. This enhancement was due to optical coupling between the fluorescence emission spectrum of ceria with the surface plasmonic resonance of gold nanoparticles. In addition, gold caused the decrease of ceria nanoparticles’ bandgap, which indicates the formation of more oxygen vacancies inside the non-stoichiometric crystalline structure of ceria. The Stern–Volmer constant, which indicates the sensitivity of optical sensing material, of ceria–gold NPs with added DO was found to be 893.7 M−1, compared to 184.6 M−1 to in case of ceria nanoparticles only, which indicates a superior optical sensitivity to DO compared to other optical sensing materials used in the literature to detect DO. Moreover, the fluorescence lifetime was found to be changed according to the variation of added DO concentration. The optically-sensitivity-enhanced ceria nanoparticles due to embedded gold nanoparticles can be a promising sensing host for dissolved oxygen in a wide variety of applications including biomedicine and water quality monitoring.
- Investigation of Conical Spinneret in Generating More Dense and Compact Electrospun NanofibersHamed, Aya; Shehata, Nader; El-Osairy, Mohamed A. (MDPI, 2017-12-22)Electrospinning is an important, widely used process to generate nanofibers. However, there is still an open window for different designs of both spinneret and collector electrodes to be investigated. This paper introduces the impact of new design of conical spinneret electrode on the generated electrospun nanofibers. In this work, the conical feeder is used to generate electrospun Poly(vinyl alcohol) (PVA) nanofibers, and being compared to the traditional needle feeder at the same processing conditions. The jet’s mechanism is simulated using discrete bead model along with estimated calculations of both deposition area and fiber radius. The electric field distribution that is around the charged cone is analyzed. Based on both theoretical modeling and experimental measurements, a comparison of mean diameter, deposited area, and the thickness of generated nanofibers is presented related to both conical and needle electrodes. Conical feeder shows clearly compact nanofibers mat in terms of deposition area (spherical deposition of diameter ~6 cm) up to half-area of needle deposited nanofibers with high fiber density for the same time of the process. Moreover, the conical electrode is found to have privilege in terms of productivity rate and operation time. This study can be useful in generating localized nanofibers within different applications, such as biomedical tissue scaffolds, textile, and sensors.
- Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell EfficiencyHajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed (MDPI, 2018-05-23)This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce4+ state ions to the Ce3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce4+ to Ce3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.
- Nano-Chitosan/Eucalyptus Oil/Cellulose Acetate Nanofibers: Manufacturing, Antibacterial and Wound Healing ActivitiesElbhnsawi, Nagwa A.; Elwakil, Bassma H.; Hassanin, Ahmed H.; Shehata, Nader; Elshewemi, Salma Sameh; Hagar, Mohamed; Olama, Zakia A. (MDPI, 2023-06-15)Accelerated wound healing in infected skin is still one of the areas where current therapeutic tactics fall short, which highlights the critical necessity for the exploration of new therapeutic approaches. The present study aimed to encapsulate Eucalyptus oil in a nano-drug carrier to enhance its antimicrobial activity. Furthermore, in vitro, and in vivo wound healing studies of the novel nano-chitosan/Eucalyptus oil/cellulose acetate electrospun nanofibers were investigated. Eucalyptus oil showed a potent antimicrobial activity against the tested pathogens and the highest inhibition zone diameter, MIC, and MBC (15.3 mm, 16.0 μg/mL, and 256 μg/mL, respectively) were recorded against Staphylococcus aureus. Data indicated a three-fold increase in the antimicrobial activity of Eucalyptus oil encapsulated chitosan nanoparticle (43 mm inhibition zone diameter against S. aureus). The biosynthesized nanoparticles had a 48.26 nm particle size, 19.0 mV zeta potential, and 0.45 PDI. Electrospinning of nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers was conducted, and the physico-chemical and biological properties revealed that the synthesized nanofibers were homogenous, with a thin diameter (98.0 nm) and a significantly high antimicrobial activity. The in vitro cytotoxic effect in a human normal melanocyte cell line (HFB4) proved an 80% cell viability using 1.5 mg/mL of nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers. In vitro and in vivo wound healing studies revealed that nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers were safe and efficiently enhanced the wound-healing process through enhancing TGF-β, type I and type III collagen production. As a conclusion, the manufactured nano-chitosan/Eucalyptus oil/cellulose acetate nanofiber showed effective potentiality for its use as a wound healing dressing.
- Nano-Enriched and Autonomous Sensing Framework for Dissolved OxygenShehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen (MDPI, 2015-08-14)This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.
- Nano-Enriched Self-Powered Wireless Body Area Network for Sustainable Health Monitoring ServicesMokhtar, Bassem; Kandas, Ishac; Gamal, Mohammed; Omran, Nada; Hassanin, Ahmed H.; Shehata, Nader (MDPI, 2023-02-27)Advances in nanotechnology have enabled the creation of novel materials with specific electrical and physical characteristics. This leads to a significant development in the industry of electronics that can be applied in various fields. In this paper, we propose a fabrication of nanotechnology-based materials that can be used to design stretchy piezoelectric nanofibers for energy harvesting to power connected bio-nanosensors in a Wireless Body Area Network (WBAN). The bio-nanosensors are powered based on harvested energy from mechanical movements of the body, specifically the arms, joints, and heartbeats. A suite of these nano-enriched bio-nanosensors can be used to form microgrids for a self-powered wireless body area network (SpWBAN), which can be used in various sustainable health monitoring services. A system model for an SpWBAN with an energy harvesting-based medium access control protocol is presented and analyzed based on fabricated nanofibers with specific characteristics. The simulation results show that the SpWBAN outperforms and has a longer lifetime than contemporary WBAN system designs without self-powering capability.