Browsing by Author "Shelley, Brett A."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Characterizing the role in amino acid sensing and signaling of Amino Acid Permease 1 in ArabidopsisShelley, Brett A. (Virginia Tech, 2021-07-28)Amino acids are necessary for protein synthesis and specialized metabolism in plants. Yet very little is known about how plants sense and regulate when and where to allocate amino acids to meet the demand for nitrogen in growing tissues. In particular, while characterized in yeast and mammals, no amino acid sensor has been identified in plants. Amino Acid Permease 1 (AAP1) has been previously characterized and was shown to mediate amino acid uptake from the soil. aap1 knockout plants and several EMS mutants affected in AAP1 sequence display enhanced tolerance to toxic concentrations of amino acids. Yet, two of the corresponding variant proteins appear to be functional transporters, effectively dissociating amino acid transport and phenotype. To understand this apparent discrepancy, I precisely studied AAP1 localization of expression at the plant and cellular level, and in specific tissue types of the root where AAP1 function is required for the tolerance phenotype and the amino acid uptake activity. I showed that AAP1 protein is present in the endoplasmic reticulum of the cortex in wild type plants Yet, its ectopic expression in root tip and phloem increased amino acid uptake, while expression in cortex could not. This and other of my results do not support the current model of AAP1 functioning in amino acid uptake by the root. I propose that the main effect of mutations in AAP1 is a disturbance in amino acid metabolism, possibly triggered by altered amino acid sensing. In this new model, AAP1 would be necessary for sensing amino acid status of cortex cells, possibly in the endoplasmic reticulum, and adjust amino acid metabolic activity and uptake to current availability. In effect, disruption of the sensing function, either by complete loss of AAP1 function (knockout) or by uncoupling the transport and sensing function (EMS mutants), would lead to the various characteristics of the phenotype of the aap1 mutants I observed. My main hypothesis is that AAP1 is a transporter endowed with sensing function, i.e., an amino acid transceptor.