Browsing by Author "Shen, Bo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Advanced Data Analytics for Quality Assurance of Smart Additive ManufacturingShen, Bo (Virginia Tech, 2022-07-07)Additive manufacturing (AM) is a powerful emerging technology for fabricating components with complex geometries using a variety of materials. However, despite the promising potential, due to the complexity of the process dynamics, how to ensure product quality and consistency of AM parts efficiently during the process remains challenging. Therefore, this dissertation aims to develop advanced machine learning methods for online process monitoring and quality assurance of smart additive manufacturing. Driven by edge computing, the Industrial Internet of Things (IIoT), sensors and other smart technologies, data collection, communication, analytics, and control are infiltrating every aspect of manufacturing. The data provides excellent opportunities to improve and revolutionize manufacturing for both quality and productivity. Despite the massive volume of data generated during a very short time, approximately 90 percent of data gets wasted or unused. The goal of sensing and data analytics for advanced manufacturing is to capture the full insight that data and analytics can discover to help address the most pressing problems. To achieve the above goal, several data-driven approaches have been developed in this dissertation to achieve effective data preprocessing, feature extraction, and inverse design. We also develop related theories for these data-driven approaches to guarantee their performance. The performances have been validated using sensor data from AM processes. Specifically, four new methodologies are proposed and implemented as listed below: 1. To make the unqualified thermal data meet the spatial and temporal resolution requirement of microstructure prediction, a super resolution for multi-sources image stream data using smooth and sparse tensor completion is proposed and applied to data acquisition of additive manufacturing. The qualified thermal data is able to extract useful information like boundary velocity, thermal gradient, etc. 2. To effectively extract features for high dimensional data with limited samples, a clustered discriminant regression is created for classification problems in healthcare and additive manufacturing. The proposed feature extraction method together with classic classifiers can achieve better classification performance than the convolutional neural network for image classification. 3. To extract the melt pool information from the processed X-ray video in metal AM process, a smooth sparse Robust Tensor Decomposition model is devised to decompose the data into the static background, smooth foreground, and noise, respectively. The proposed method exhibits superior performance in extracting the melt pool information on X-ray data. 4. To learn the material property for different printing settings, a multi-task Gaussian process upper confidence bound is developed for the sequential experiment design, where a no-regret algorithm is implemented. The proposed algorithm aims to learn the optimal material property for different printing settings. By fully utilizing the sensor data with innovative data analytics, the above-proposed methodologies are used to perform interdisciplinary research, promote technical innovations, and achieve balanced theoretical/practical advancements. In addition, these methodologies are inherently integrated into a generic framework. Thus, they can be easily extended to other manufacturing processes, systems, or even other application areas such as healthcare systems.
- Clustered Discriminant Regression for High-Dimensional Data Feature Extraction and Its Applications in Healthcare and Additive ManufacturingShen, Bo; Xie, Weijun; James Kong, Zhenyu (IEEE, 2021-10-01)The recent increase in applications of high-dimensional data poses a severe challenge to data analytics, such as supervised classification, particularly for online applications. To tackle this challenge, efficient and effective methods for feature extraction are critical to the performance of classification analysis. The objective of this work is to develop a new supervised feature extraction method for high-dimensional data. It is achieved by developing a clustered discriminant regression (CDR) to extract informative and discriminant features for high-dimensional data. In CDR, the variables are clustered into different groups or subspaces, within which feature extraction is performed separately. The CDR algorithm, which is a greedy approach, is implemented to obtain the solution toward optimal feature extraction. One numerical study is performed to demonstrate the performance of the proposed method for variable selection. Three case studies using healthcare and additive manufacturing data sets are accomplished to demonstrate the classification performance of the proposed methods for real-world applications. The results clearly show that the proposed method is superior over the existing method for high-dimensional data feature extraction. Note to Practitioners - This article forwards a new supervised feature extraction method termed clustered discriminant regression. This method is highly effective for classification analysis of high-dimensional data, such as images or videos, where the number of variables is much larger than the number of samples. In our case studies on healthcare and additive manufacturing, the performance of classification analysis based on our method is superior over the existing feature extraction methods, which is confirmed by using various popular classification algorithms. For image classification, our method with elaborately selected classification algorithms can outperform a convolutional neural network. In addition, the computation efficiency of the proposed method is also promising, which enables its online applications, such as advanced manufacturing process monitoring and control.
- In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysisWang, Rongxuan; Garcia, David; Kamath, Rakesh R.; Dou, Chaoran; Ma, Xiaohan; Shen, Bo; Choo, Hahn; Fezzaa, Kamel; Yu, Hang Z.; Kong, Zhenyu (James) (Nature Portfolio, 2022-08-12)Laser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases. Aside from presenting the sensing capability, this paper develops an effective algorithm for high-speed X-ray imaging data to identify melt pool geometries accurately. Preprocessing methods are also implemented for the IR data to estimate the emissivity value and extrapolate the saturated pixels. Quantifications on boundary velocities, melt pool dimensions, thermal gradients, and cooling rates are performed, enabling future comprehensive melt pool dynamics and microstructure analysis. The study discovers a strong correlation between the thermal and X-ray data, demonstrating the feasibility of using relatively cheap IR cameras to predict features that currently can only be captured using costly synchrotron X-ray imaging. Such correlation can be used for future thermal-based melt pool control and model validation.