Browsing by Author "Shen, Shihui"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Estimation of the Vehicle Speed Using Cross-Correlation Algorithms and MEMS Wireless SensorsZhang, Cheng; Shen, Shihui; Huang, Hai; Wang, Linbing (MDPI, 2021-03-02)Traffic information is critical for pavement design, management, and health monitoring. Numerous in-pavement sensors have been developed and installed to collect the traffic volume and loading amplitude. However, limited attention has been paid to the algorithm of vehicle speed estimation. This research focuses on the estimation of the vehicle speed based on a cross-correlation method. A novel wireless micro-electromechanical sensor (MEMS), Smartrock is used to capture the triaxial acceleration, rotation, and stress data. The cross-correlation algorithms, i.e., normalized cross-correlation (NCC) algorithm, the smoothed coherence transform (SCOT) algorithm, and the phase transform (PHAT) algorithm, are applied to estimate the loading speed of an accelerated pavement test (APT) and the traffic speed in the field. The signal-noise-ratio (SNR) and the mean relative error (MRE) are utilized to evaluate the stability and accuracy of the algorithms. The results show that both the correlated noise and independent noise have significant influence in the field data. The SCOT algorithm is recommended for speed estimation with reasonable accuracy and stability because of a large SNR value and the lowest MRE value among the algorithms. The loading speed investigated in this study was within 50 km/h and further verification is needed for higher speed estimation.
- Real-Time and Efficient Traffic Information Acquisition via Pavement Vibration IoT Monitoring SystemYe, Zhoujing; Yan, Guannan; Wei, Ya; Zhou, Bin; Li, Ning; Shen, Shihui; Wang, Linbing (MDPI, 2021-04-10)Traditional road-embedded monitoring systems for traffic monitoring have the disadvantages of a short life, high energy consumption and data redundancy, resulting in insufficient durability and high cost. In order to improve the durability and efficiency of the road-embedded monitoring system, a pavement vibration monitoring system is developed based on the Internet of things (IoT). The system includes multi-acceleration sensing nodes, a gateway, and a cloud platform. The key design principles and technologies of each part of the system are proposed, which provides valuable experience for the application of IoT monitoring technology in road infrastructures. Characterized by low power consumption, distributed computing, and high extensibility properties, the pavement vibration IoT monitoring system can realize the monitoring, transmission, and analysis of pavement vibration signal, and acquires the real-time traffic information. This road-embedded system improves the intellectual capacity of road infrastructure and is conducive to the construction of a new generation of smart roads.