Browsing by Author "Shen, Wenqi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Consumer-Centric Innovation for Mobile Apps Empowered by Social Media AnalyticsQiao, Zhilei (Virginia Tech, 2018-06-20)Due to the rapid development of Internet communication technologies (ICTs), an increasing number of social media platforms exist where consumers can exchange comments online about products and services that businesses offer. The existing literature has demonstrated that online user-generated content can significantly influence consumer behavior and increase sales. However, its impact on organizational operations has been primarily focused on marketing, with other areas understudied. Hence, there is a pressing need to design a research framework that explores the impact of online user-generated content on important organizational operations such as product innovation, customer relationship management, and operations management. Research efforts in this dissertation center on exploring the co-creation value of online consumer reviews, where consumers' demands influence firms' decision-making. The dissertation is composed of three studies. The first study finds empirical evidence that quality signals in online product reviews are predictors of the timing of firms' incremental innovation. Guided by the product differentiation theory, the second study examines how companies' innovation and marketing differentiation strategies influence app performance. The last study proposes a novel text analytics framework to discover different information types from user reviews. The research contributes theoretical and practical insights to consumer-centric innovation and social media analytics literature.
- Human Learning-Augmented Machine Learning Frameworks for Text AnalyticsXia, Long (Virginia Tech, 2020-05-18)Artificial intelligence (AI) has made astonishing breakthroughs in recent years and achieved comparable or even better performance compared to humans on many real-world tasks and applications. However, it is still far from reaching human-level intelligence in many ways. Specifically, although AI may take inspiration from neuroscience and cognitive psychology, it is dramatically different from humans in both what it learns and how it learns. Given that current AI cannot learn as effectively and efficiently as humans do, a natural solution is analyzing human learning processes and projecting them into AI design. This dissertation presents three studies that examined cognitive theories and established frameworks to integrate crucial human cognitive learning elements into AI algorithms to build human learning–augmented AI in the context of text analytics. The first study examined compositionality—how information is decomposed into small pieces, which are then recomposed to generate larger pieces of information. Compositionality is considered as a fundamental cognitive process, and also one of the best explanations for humans' quick learning abilities. Thus, integrating compositionality, which AI has not yet mastered, could potentially improve its learning performance. By focusing on text analytics, we first examined three levels of compositionality that can be captured in language. We then adopted design science paradigms to integrate these three types of compositionality into a deep learning model to build a unified learning framework. Lastly, we extensively evaluated the design on a series of text analytics tasks and confirmed its superiority in improving AI's learning effectiveness and efficiency. The second study focused on transfer learning, a core process in human learning. People can efficiently and effectively use knowledge learned previously to solve new problems. Although transfer learning has been extensively studied in AI research and is often a standard procedure in building machine learning models, existing techniques are not able to transfer knowledge as effectively and efficiently as humans. To solve this problem, we first drew on the theory of transfer learning to analyze the human transfer learning process and identify the key elements that elude AI. Then, following the design science paradigm, a novel transfer learning framework was proposed to explicitly capture these cognitive elements. Finally, we assessed the design artifact's capability to improve transfer learning performance and validated that our proposed framework outperforms state-of-the-art approaches on a broad set of text analytics tasks. The two studies above researched knowledge composition and knowledge transfer, while the third study directly addressed knowledge itself by focusing on knowledge structure, retrieval, and utilization processes. We identified that despite the great progress achieved by current knowledge-aware AI algorithms, they are not dealing with complex knowledge in a way that is consistent with how humans manage knowledge. Grounded in schema theory, we proposed a new design framework to enable AI-based text analytics algorithms to retrieve and utilize knowledge in a more human-like way. We confirmed that our framework outperformed current knowledge-based algorithms by large margins with strong robustness. In addition, we evaluated more intricately the efficacy of each of the key design elements.
- Online Communities and HealthVillacis Calderon, Eduardo David (Virginia Tech, 2022-08-26)People are increasingly turning to online communities for entertainment, information, and social support, among other uses and gratifications. Online communities include traditional online social networks (OSNs) such as Facebook but also specialized online health communities (OHCs) where people go specifically to seek social support for various health conditions. OHCs have obvious health ramifications but the use of OSNs can also influence people's mental health and health behaviors. The use of online communities has been widely studied but in the health context their exploration has been more limited. Not only are online communities being extensively used for health purposes, but there is also increasing concern that the use of online communities can itself affect health. Therefore, there is a need to better understand how such technologies influence people's health and health behaviors. The research in this dissertation centers on examining how online community use influences health and health behaviors. There are three studies in this dissertation. The first study develops a conceptual model to explain the process whereby the characteristics of a request from an OHC user for social support is answered by a wounded healer, who is a person leveraging their own experiences with health challenges to help others. The second study investigates how algorithmic fairness, accountability, and transparency of an OSN newsfeed algorithm influence the users' attitudes and beliefs about childhood vaccines and ultimately their vaccine hesitancy. The third study examines how OSN social overload, through OSN use, can lead to psychological distress and received social support. The research contributes theoretical and practical insights to the literature on the use of online communities in the health context.
- A Surrogate-based Generic Classifier for Chinese TV Series ReviewsMa, Yufeng; Xia, Long; Shen, Wenqi; Zhou, Mi; Fan, Weiguo (2016-11-21)With the emerging of various online video platforms like Youtube, Youku and LeTV, online TV series' reviews become more and more important both for viewers and producers. Customers rely heavily on these reviews before selecting TV series, while producers use them to improve the quality. As a result, automatically classifying reviews according to different requirements evolves as a popular research topic and is essential in our daily life. In this paper, we focused on reviews of hot TV series in China and successfully trained generic classifiers based on eight predefined categories. The experimental results showed promising performance and effectiveness of its generalization to different TV series.