Browsing by Author "Shepherd, Stephanie L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Investigating small unoccupied aerial systems (sUAS) multispectral imagery for total suspended solids and turbidity monitoring in small streamsPrior, Elizabeth M.; O'Donnell, Frances C.; Brodbeck, Christian; Runion, G. Brett; Shepherd, Stephanie L. (2021-01-02)Small unoccupied aerial systems (sUAS) are increasingly used for field data collection and remote sensing purposes. Their ease of use, ability to carry sensors, low cost, precise manoeuvrability and navigation makes them versatile tools. The goal of this study is to investigate if sUAS multispectral imagery can be utilized to measure turbidity and total suspended solids (TSS) of small streams. sUAS multispectral imagery and water samples at varying depths were collected before and after rain events on three sampling dates in 2019 from Moores Creek in Lanett, Alabama (AL), United States of America (USA), which was restored in 2017. The water samples were processed for TSS and turbidity and related to pixel values from the multispectral imagery. Linear regression was used to develop models for TSS and turbidity. The models were then tested on Moores Mill Creek in Chewacla State Park, AL, USA. For Lanett, TSS and turbidity regression models for low flows had coefficients of determination (R-2) values of 0.77 and 0.78, respectively. During high flows, different single bands and band ratios were required for comparableR(2)values, suggesting separate models may be needed for high and low flow events. When the Lanett models were applied to Chewacla State Park, predicted TSS and turbidity were not comparable to measured values indicating that location-specific models may be required. Future research should incorporate depth as a variable since streambed visibility likely impacts results, along with other modelling and data analysis methods, such as machine learning.
- Measuring High Levels of Total Suspended Solids and Turbidity Using Small Unoccupied Aerial Systems (sUAS) Multispectral ImageryPrior, Elizabeth M.; O'Donnell, Frances C.; Brodbeck, Christian; Donald, Wesley N.; Runion, George Brett; Shepherd, Stephanie L. (MDPI, 2020-09-08)Due to land development, high concentrations of suspended sediment are produced from erosion after rain events. Sediment basins are commonly used for the settlement of suspended sediments before discharge. Stormwater regulations may require frequent sampling and monitoring of these basins, both of which are time and labor intensive. Potential remedies are small, unoccupied aerial systems (sUAS). The goal of this study was to demonstrate whether sUAS multispectral imagery could measure high levels of total suspended solids (TSS) and turbidity in a sediment basin. The sediment basin at the Auburn University Erosion and Sediment Control Testing Facility was used to simulate a local 2-year, 24-h storm event with a 30-min flow rate. Water samples were collected at three depths in two locations every 15 min for six hours with corresponding sUAS multispectral imagery. Multispectral pixel values were related to TSS and turbidity in separate models using multiple linear regressions. TSS and turbidity regression models had coefficients of determination (r2) values of 0.926 and 0.851, respectively. When water column measurements were averaged, the r2 values increased to 0.965 and 0.929, respectively. The results indicated that sUAS multispectral imagery is a viable option for monitoring and assessing sediment basins during high-concentration events.