Browsing by Author "Shih, Ie-Ming"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumorFu, Yi; Yu, Guoqiang; Levine, Douglas A.; Wang, Niya; Shih, Ie-Ming; Zhang, Zhen; Clarke, Robert; Wang, Yue (Springer Nature, 2015-09-09)Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate average-ploidy value. While BACOM has been validated and used with promising results, subsequent BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity was lower than expected. In this report, we first show that this lowered estimate of tumor purity is the combined result of imprecise signal normalization and parameter estimation. Then, we describe effective allele-specific absolute normalization and quantification methods that can enhance BACOM applications in many biological contexts while in the presence of various confounders. Finally, we discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised computational approach, BACOM2.0, and validate its performance in real and simulated datasets.
- ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profilesChen, Xi; Jung, Jin-Gyoung; Shajahan-Haq, Ayesha N.; Clarke, Robert; Shih, Ie-Ming; Wang, Yue; Magnani, Luca; Wang, Tian-Li; Xuan, Jianhua (Oxford, 2015-12-23)Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways.
- Genome-wide identification of significant aberrations in cancer genomeYuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P.; Wang, Roger R.; Zhang, Zhen; Wang, Yue (2012-07-27)Background Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at http://www.cbil.ece.vt.edu/software.htm.
- Identification of PBX1 Target Genes in Cancer Cells by Global Mapping of PBX1 Binding SitesThiaville, Michelle M.; Stoeck, Alexander; Chen, Li; Wu, Ren-Chin; Magnani, Luca; Oidtman, Jessica; Shih, Ie-Ming; Lupien, Mathieu; Wang, Tian-Li (PLOS, 2012-05-02)PBX1 is a TALE homeodomain transcription factor involved in organogenesis and tumorigenesis. Although it has been shown that ovarian, breast, and melanoma cancer cells depend on PBX1 for cell growth and survival, the molecular mechanism of how PBX1 promotes tumorigenesis remains unclear. Here, we applied an integrated approach by overlapping PBX1 ChIP-chip targets with the PBX1-regulated transcriptome in ovarian cancer cells to identify genes whose transcription was directly regulated by PBX1. We further determined if PBX1 target genes identified in ovarian cancer cells were co-overexpressed with PBX1 in carcinoma tissues. By analyzing TCGA gene expression microarray datasets from ovarian serous carcinomas, we found co-upregulation of PBX1 and a significant number of its direct target genes. Among the PBX1 target genes, a homeodomain protein MEOX1 whose DNA binding motif was enriched in PBX1-immunoprecipicated DNA sequences was selected for functional analysis. We demonstrated that MEOX1 protein interacts with PBX1 protein and inhibition of MEOX1 yields a similar growth inhibitory phenotype as PBX1 suppression. Furthermore, ectopically expressed MEOX1 functionally rescued the PBX1-withdrawn effect, suggesting MEOX1 mediates the cellular growth signal of PBX1. These results demonstrate that MEOX1 is a critical target gene and cofactor of PBX1 in ovarian cancers.
- Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogrammingRahmanto, Yohan Suryo; Shen, Wenjing; Shi, Xu; Chen, Xi; Yu, Yu; Yu, Zheng-Cheng; Miyamoto, Tsutomu; Lee, Meng-Horng; Singh, Vivek; Asaka, Ryoichi; Shimberg, Geoffrey; Vitolo, Michele, I.; Martin, Stuart S.; Wirtz, Denis; Drapkin, Ronny; Xuan, Jianhua; Wang, Tian-Li; Shih, Ie-Ming (2020-06-01)Somatic inactivating mutations of ARID1A, a SWI/SNF chromatin remodeling gene, are prevalent in human endometrium-related malignancies. To elucidate the mechanisms underlying how ARID1A deleterious mutation contributes to tumorigenesis, we establish genetically engineered murine models with Arid1a and/or Pten conditional deletion in the endometrium. Transcriptomic analyses on endometrial cancers and precursors derived from these mouse models show a close resemblance to human uterine endometrioid carcinomas. We identify transcriptional networks that are controlled by Arid1a and have an impact on endometrial tumor development. To verify findings from the murine models, we analyze ARID1A(WT) and ARID1A(KO) human endometrial epithelial cells. Using a system biology approach and functional studies, we demonstrate that ARID1A-deficiency lead to loss of TGF-beta tumor suppressive function and that inactivation of ARID1A/TGF-beta axis promotes migration and invasion of PTEN-deleted endometrial tumor cells. These findings provide molecular insights into how ARID1A inactivation accelerates endometrial tumor progression and dissemination, the major causes of cancer mortality.
- Knowledge-fused differential dependency network models for detecting significant rewiring in biological networksTian, Ye; Zhang, Bai; Hoffman, Eric P.; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M.; Wang, Yue (2014-07-24)Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowled≥ missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological networks. The method efficiently leverages data-driven evidence and existing biological knowledge while remaining robust to the false positive edges in the prior knowledge. The identified network rewiring events are supported by previous studies in the literature and also provide new mechanistic insight into the biological systems. We expect the knowledge-fused differential dependency network analysis, together with the open-source R package, to be an important and useful bioinformatics tool in biological network analyses.
- Knowledge-guided multi-scale independent component analysis for biomarker identificationChen, Li; Xuan, Jianhua; Wang, Chen; Shih, Ie-Ming; Wang, Yue; Zhang, Zhen; Hoffman, Eric P.; Clarke, Robert (2008-10-06)Background Many statistical methods have been proposed to identify disease biomarkers from gene expression profiles. However, from gene expression profile data alone, statistical methods often fail to identify biologically meaningful biomarkers related to a specific disease under study. In this paper, we develop a novel strategy, namely knowledge-guided multi-scale independent component analysis (ICA), to first infer regulatory signals and then identify biologically relevant biomarkers from microarray data. Results Since gene expression levels reflect the joint effect of several underlying biological functions, disease-specific biomarkers may be involved in several distinct biological functions. To identify disease-specific biomarkers that provide unique mechanistic insights, a meta-data "knowledge gene pool" (KGP) is first constructed from multiple data sources to provide important information on the likely functions (such as gene ontology information) and regulatory events (such as promoter responsive elements) associated with potential genes of interest. The gene expression and biological meta data associated with the members of the KGP can then be used to guide subsequent analysis. ICA is then applied to multi-scale gene clusters to reveal regulatory modes reflecting the underlying biological mechanisms. Finally disease-specific biomarkers are extracted by their weighted connectivity scores associated with the extracted regulatory modes. A statistical significance test is used to evaluate the significance of transcription factor enrichment for the extracted gene set based on motif information. We applied the proposed method to yeast cell cycle microarray data and Rsf-1-induced ovarian cancer microarray data. The results show that our knowledge-guided ICA approach can extract biologically meaningful regulatory modes and outperform several baseline methods for biomarker identification. Conclusion We have proposed a novel method, namely knowledge-guided multi-scale ICA, to identify disease-specific biomarkers. The goal is to infer knowledge-relevant regulatory signals and then identify corresponding biomarkers through a multi-scale strategy. The approach has been successfully applied to two expression profiling experiments to demonstrate its improved performance in extracting biologically meaningful and disease-related biomarkers. More importantly, the proposed approach shows promising results to infer novel biomarkers for ovarian cancer and extend current knowledge.