Browsing by Author "Si, Nan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Coupling with the Embedded Boundary Method in a Runge-Kutta Discontinuous-Galerkin Direct Ghost-Fluid Method (RKDG-DGFM) Framework for Fluid-Structure Interaction Simulations of Underwater ExplosionsSi, Nan; Lu, Zhaokuan; Brown, Alan J. (MDPI, 2021-12-03)Solution of near-field underwater explosion (UNDEX) problems frequently require the modeling of two-way coupled fluid-structure interaction (FSI). This paper describes the addition of an embedded boundary method to an UNDEX modeling framework for multiphase, compressible and inviscid fluid using the combined algorithms of Runge-Kutta, discontinuous-Galerkin, level-set and direct ghost-fluid methods. A computational fluid dynamics (CFD) solver based on these algorithms has been developed as described in previous work. A fluid-structure coupling approach was required to perform FSI simulation interfacing with an external structural mechanics solver. Large structural deformation and possible rupture and cracking characterize the FSI phenomenon in an UNDEX, so the embedded boundary method (EBM) is more appealing for this application in comparison to dynamic mesh methods such as the arbitrary Lagrangian-Eulerian (ALE) method to enable the fluid-structure coupling algorithm in the fluid. Its limitation requiring a closed interface that is fully submerged in the fluid domain is relaxed by an adjustment described in this paper so that its applicability is extended. Two methods of implementing the fluid-structure wall boundary condition are also compared. The first solves a local 1D fluid-structure Riemann problem at each intersecting point between the wetted elements and fluid mesh. In this method, iterations are required when the Tait equation of state is utilized. A second method that does not require the Riemann solution and iterations is also implemented and the results are compared.
- A Direct Ghost Fluid Method for Modeling Explosive Gas and Water FlowsSi, Nan; Park, Jinwon; Brown, Alan J. (Hindawi, 2022-04-16)This work presents a Direct Ghost Fluid Method (DGFM) as part of a two-fluid numerical framework suitable to model explosive gas and water flows resulting from underwater explosion (UNDEX). Due to the presence of explosive gas and water with shock waves in the modeling domain, classic Eulerian methods with inherent diffusion may not be effective. Numerical diffusion occurs due to nonphysical diffused density at material interfaces, which creates spurious pressure oscillations and significantly degrades the quality of the numerical results. To eliminate or minimize numerical diffusion, sharp interface methods having no mixed elements may be used in multifluid flow computations. The Direct Ghost Fluid Method (DGFM) described in this paper uses direct extrapolation of density (vice pressure) and tangential velocity from real to ghost fluid. The spurious pressure oscillations near the material interface are therefore minimized. One-, two-, and three-dimensional computational fluid dynamics (CFD) solvers that have DGFM as an essential part in their framework to model UNDEX interface conditions are developed, explored, and applied to the simulation of a series of benchmark problems. Excellent agreement is obtained among the simulations, the analytical solutions, and the experiments.
- A Framework of Runge-Kutta, Discontinuous Galerkin, Level Set and Direct Ghost Fluid Methods for the Multi-Dimensional Simulation of Underwater ExplosionsSi, Nan; Brown, Alan J. (MDPI, 2021-12-29)This work describes the development of a hybrid framework of Runge–Kutta (RK), discontinuous Galerkin (DG), level set (LS) and direct ghost fluid (DGFM) methods for the simulation of near-field and early-time underwater explosions (UNDEX) in early-stage ship design. UNDEX problems provide a series of challenging issues to be solved. The multi-dimensional, multi-phase, compressible and inviscid fluid-governing equations must be solved numerically. The shock front in the solution field must be captured accurately while maintaining the total variation diminishing (TVD) properties. The interface between the explosive gas and water must be tracked without letting the numerical diffusion across the material interface lead to spurious pressure oscillations and thus the failure of the simulation. The non-reflecting boundary condition (NRBC) must effectively absorb the wave and prevent it from reflecting back into the fluid. Furthermore, the CFD solver must have the capability of dealing with fluid–structure interactions (FSI) where both the fluid and structural domains respond with significant deformation. These issues necessitate a hybrid model. In-house CFD solvers (UNDEXVT) are developed to test the applicability of this framework. In this development, code verification and validation are performed. Different methods of implementing non-reflecting boundary conditions (NRBCs) are compared. The simulation results of single and multi-dimensional cases that possess near-field and early-time UNDEX features—such as shock and rarefaction waves in the fluid, the explosion bubble, and the variation of its radius over time—are presented. Continuing research on two-way coupled FSI with large deformation is introduced, and together with a more complete description of the direct ghost fluid method (DGFM) in this framework will be described in subsequent papers.
- A Hybrid Framework of CFD Numerical Methods and its Application to the Simulation of Underwater ExplosionsSi, Nan (Virginia Tech, 2022-02-08)Underwater explosions (UNDEX) and a ship's vulnerability to them are problems of interest in early-stage ship design. A series of events occur sequentially in an UNDEX scenario in both the fluid and structural domains and these events happen over a wide range of time and spatial scales. Because of the complexity of the physics involved, it is a common practice to separate the description of UNDEX into early-time and late-time, and far-field and near-field. The research described in this dissertation is focused on the simulation of near-field and early-time UNDEX. It assembles a hybrid framework of algorithms to provide results while maintaining computational efficiency. These algorithms include Runge-Kutta, Discontinuous Galerkin, Level Set, Direct Ghost Fluid and Embedded Boundary methods. Computational fluid dynamics (CFD) solvers are developed using this framework of algorithms to demonstrate the computational methods and their ability to effectively and efficiently solve UNDEX problems. Contributions, made in the process of satisfying the objective of this research include: the derivation of eigenvectors of flux Jacobians and their application to the implementation of the slope limiter in the fluid discretization; the three-dimensional extension of Direct Ghost Fluid Method and its application to the multi-fluid treatment in UNDEX flows; the enforcement of an improved non-reflecting boundary condition and its application to UNDEX simulations; and an improvement to the projection-based embedded boundary method and its application to fluid-structure interaction simulations of UNDEX problems.