Browsing by Author "Slezak, Tom"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunityZapata, Juan Carlos; Poonia, Bhawna; Bryant, Joseph; Davis, Harry; Ateh, Eugene; George, Lanea; Crasta, Oswald R.; Zhang, Yan; Slezak, Tom; Jaing, Crystal; Pauza, C. D.; Goicochea, Marco; Moshkoff, Dmitry; Lukashevich, Igor S.; Salvato, Maria S. (2013-02-12)Background Lassa hemorrhagic fever (LHF) is a rodent-borne viral disease that can be fatal for human beings. In this study, an attenuated Lassa vaccine candidate, ML29, was tested in SIV-infected rhesus macaques for its ability to elicit immune responses without instigating signs pathognomonic for arenavirus disease. ML29 is a reassortant between Lassa and Mopeia viruses that causes a transient infection in non-human primates and confers sterilizing protection from lethal Lassa viral challenge. However, since the LHF endemic area of West Africa also has high HIV seroprevalence, it is important to determine whether vaccination could be safe in the context of HIV infection. Results SIV-infected and uninfected rhesus macaques were vaccinated with the ML29 virus and monitored for specific humoral and cellular immune responses, as well as for classical and non-classical signs of arenavirus disease. Classical disease signs included viremia, rash, respiratory distress, malaise, high liver enzyme levels, and virus invasion of the central nervous system. Non-classical signs, derived from profiling the blood transcriptome of virulent and non-virulent arenavirus infections, included increased expression of interferon-stimulated genes (ISG) and decreased expression of COX2, IL-1β, coagulation intermediates and nuclear receptors needed for stress signaling. All vaccinated monkeys showed ML29-specific antibody responses and ML29-specific cell-mediated immunity. Conclusion SIV-infected and uninfected rhesus macaques responded similarly to ML29 vaccination, and none developed chronic arenavirus infection. Importantly, none of the macaques developed signs, classical or non-classical, of arenavirus disease.
- MvirDB - a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applicationsZhou, C. E.; Smith, J.; Lam, M.; Zemla, A.; Dyer, Matthew D.; Slezak, Tom (2007-01)Knowledge of toxins, virulence factors and antibiotic resistance genes is essential for bio-defense applications aimed at identifying 'functional' signatures for characterizing emerging or engineered pathogens. Whereas genetic signatures identify a pathogen, functional signatures identify what a pathogen is capable of. To facilitate rapid identification of sequences and characterization of genes for signature discovery, we have collected all publicly available (as of this writing), organized sequences representing known toxins, virulence factors, and antibiotic resistance genes in one convenient database, which we believe will be of use to the bio-defense research community. MvirDB integrates DNA and protein sequence information from Tox-Prot, SCORPION, the PRINTS virulence factors, VFDB, TVFac, Islander, ARGO and a subset of VIDA. Entries in MvirDB are hyperlinked back to their original sources. A blast tool allows the user to blast against all DNA or protein sequences in MvirDB, and a browser tool allows the user to search the database to retrieve virulence factor descriptions, sequences, and classifications, and to download sequences of interest. MvirDB has an automated weekly update mechanism. Each protein sequence in MvirDB is annotated using our fully automated protein annotation system and is linked to that system's browser tool. MvirDB can be accessed at http://mvirdb.llnl.gov/.