Browsing by Author "Smith, Jennifer A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Garden Bird Feeding: Insights and Prospects from a North-South Comparison of This Global Urban PhenomenonReynolds, S. James; Galbraith, Josie A.; Smith, Jennifer A.; Jones, Darryl N. (Frontiers, 2017-04-07)Intentional feeding of wild birds in gardens or backyards is one of the most popular forms of human-wildlife interactions in the developed world, especially in urban environments. The scale and intensity of bird feeding are enormous with mainly birdseed consumed daily by a range of species. This represents a subsidy to natural diets of birds attracted to the feeders and typically involves novel dietary components. Yet, relatively little is known about how it influences the behavior and ecology of the species visiting feeders. In part, research has been hampered by logistical difficulties of working in urban areas but studies have demonstrated powerful influences on behavior and phenology of avian breeding, the spread of disease, and the structure of avian communities. Here, we compare bird feeding between Northern and Southern Hemispheres as a means of exploring how similarities and differences in avian responses might inform knowledge of this global urban phenomenon. We start by tracing its origins to north-western Europe and how its expansion has occurred before considering how geographical differences in feeding practices and attitudes map onto bird feeding "on the ground." We explore some of the major emerging themes of recent interest, including why citizens are motivated to feed birds, whether birds become fully dependent on food supplements, the role of feeding in avian disease transmission, and how feeding changes urban bird communities. By proposing that scientists work in collaboration with the public providing food to birds, we pose key research questions that need to be answered urgently and suggest accompanying experimental approaches to do so. These approaches are essential if we are to improve our understanding of how bird feeding shapes the behavior, ecology, movements, and community structure of urban birds. Our hope is that through such citizen science we will be able to provide advice as to location-relevant practices that should maximize benefits to both urban biodiversity and human well-being, and minimize potential adverse impacts. We demonstrate that bird feeding is important for urban biodiversity conservation, community engagement, and in establishing personal connections with nature and their associated benefits.
- The Impact of Targeted Data Management Training for Field Research Projects - A Case StudyPetters, Jonathan L.; Brooks, George C.; Smith, Jennifer A.; Haas, Carola A. (2019-05-21)We present a joint effort at Virginia Tech between a research group in the Department of Fish and Wildlife Conservation and Data Services in the University Libraries to improve data management for long-term ecological field research projects in the Florida Panhandle. Consultative research data management support from Data Services in the University Libraries played an integral role in development of the training curriculum. Emphasizing the importance of data quality to the field workers at the beginning of this training curriculum was a vital part of its success. Also critical for success was the research group’s investment of time and effort to work with field workers and improve data management systems. We compare this case study to three others in the literature to compare and contrast data management processes and procedures. This case study serves as one example of how targeted training and efforts in data and project management for a research project can lead to substantial improvements in research data quality.
- The power, potential, and pitfalls of open access biodiversity data in range size assessments: Lessons from the fishesSmith, Jennifer A.; Benson, Abigail L.; Chen, Ye; Yamada, Steffany A.; Mims, Meryl C. (Elsevier, 2019-11-14)Geographic rarity is a driver of a species’ intrinsic risk of extinction. It encompasses multiple key components including range size, which is one of the most commonly measured estimates of geographic rarity. Range size estimates are often used to prioritize conservation efforts when there are multiple candidate species, because data for other components of rarity such as population size are sparse, or do not exist for species of interest. Range size estimates can provide rankings of species vulnerability to changing environments or threats, identifying rare species for future study or conservation initiatives. However, range sizes can be estimated by several different metrics, and the degree of overlap in the identification of the rarest or most common species across methodologies is not well understood. This knowledge gap compromises our ability to prioritize correctly rare species, and presents a particularly difficult challenge for stream-dwelling organisms with distributions constrained to river networks. We evaluated the relationship of multiple range size estimates of a subset of freshwater fishes native to the United States to determine the degree of overlap in rarity rankings using different data sources and grain sizes. We used publicly available, open access data from the Global Biodiversity Information Facility (GBIF) to calculate extent of occurrence (minimum convex polygons) and area of occupancy (total area occupied, measured across various grain sizes). We compared range sizes estimated using GBIF data with the best available estimates of current distributions described by publicly available digital maps (NatureServe) to evaluate the efficacy of GBIF data in assessments of range size. We found strong correlations between range size estimates across analytical approaches and data sources with no detectable bias of taxonomy. We found that variation among rarity rankings was highest for species with intermediate range sizes indicating that the approaches considered here generally converge when used to identify the rarest or the most common species. Importantly, our results show that the rarest, and perhaps the most vulnerable, species are consistently identified across common methodological approaches. More broadly, our results support the use of open access biodiversity data that include opportunistically collated and collected point occurrence records as a complement to coarse-grain (e.g., whole range map) approaches, as we observed no systematic bias or deviation across data sources in our analyses. This indicates databases such as the GBIF may help fill important fundamental and applied knowledge gaps for many poorly understood species, particularly in a broad-scale, multispecies framework.
- Spatial extent drives patterns of relative climate change sensitivity for freshwater fishes of the United StatesSilknetter, Samuel C.; Benson, Abigail L.; Smith, Jennifer A.; Mims, Meryl C. (Wiley, 2024-03)Assessing the sensitivity of freshwater species to climate change is an essential component of prioritizing conservation efforts for threatened freshwater ecosystems and organisms. Sensitivity to climate change can be systematically evaluated for multiple species using geographic attributes such as range size and climate niche breadth, and using species traits associated with climate change sensitivity. These systematic evaluations produce relative rankings of species sensitivity to aid conservation prioritization and to identify relatively sensitive species that may otherwise be understudied or overlooked. Due in part to biogeographic constraints, species assemblages change across regions and spatial extents; yet, the degree to which spatial factors influence relative rankings of species sensitivity is unclear. The spatial extent of multispecies analyses may alter relative rankings of species climate sensitivity; alternatively, relative climate sensitivity may be conserved among spatial scales, resulting in consistent identification of sensitive species among regions and spatial extents. We investigated how spatial extent influences our understanding of relative climate sensitivity for 137 native freshwater fishes of the United States that were representative of taxonomic, trait, and geographic diversity. Using publicly available occurrence data from the Global Biodiversity Information Facility, we calculated a systematic, geographically derived index of climate change sensitivity for study species at national and regional extents, including within four major hydrologic subregions of the United States. We examined the effects of spatial extent on the relative ranking of climate sensitivity among species, and we explored relationships among climate sensitivity, species traits, and conservation status at regional and national extents. We found that climate sensitivity rankings of species were influenced by spatial extent in some specific instances, but that relative rankings were largely conserved across spatial scales. However, correlations among geographically derived climate sensitivity rankings and species traits associated with climate sensitivity were variable across scales and regions, suggesting that links between geographic rarity and species traits may be scale-dependent in some cases. Finally, we found few associations between climate sensitivity and current conservation status among species. Systematic approaches to quantifying climate sensitivity may offer an opportunity to identify sensitive but overlooked species for pre-listing actions such as monitoring or conservation agreements.