Browsing by Author "Smith, Nicholas G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Increasing the spatial and temporal impact of ecological research: A roadmap for integrating a novel terrestrial process into an Earth system modelKyker-Snowman, Emily; Lombardozzi, Danica L.; Bonan, Gordon B.; Cheng, Susan J.; Dukes, Jeffrey S.; Frey, Serita D.; Jacobs, Elin M.; McNellis, Risa; Rady, Joshua M.; Smith, Nicholas G.; Thomas, R. Quinn; Wieder, William W.; Grandy, A. Stuart (Wiley, 2021-09-20)Terrestrial ecosystems regulate Earth's climate through water, energy, and biogeochemical transformations. Despite a key role in regulating the Earth system, terrestrial ecology has historically been underrepresented in the Earth system models (ESMs) that are used to understand and project global environmental change. Ecology and Earth system modeling must be integrated for scientists to fully comprehend the role of ecological systems in driving and responding to global change. Ecological insights can improve ESM realism and reduce process uncertainty, while ESMs offer ecologists an opportunity to broadly test ecological theory and increase the impact of their work by scaling concepts through time and space. Despite this mutualism, meaningfully integrating the two remains a persistent challenge, in part because of logistical obstacles in translating processes into mathematical formulas and identifying ways to integrate new theories and code into large, complex model structures. To help overcome this interdisciplinary challenge, we present a framework consisting of a series of interconnected stages for integrating a new ecological process or insight into an ESM. First, we highlight the multiple ways that ecological observations and modeling iteratively strengthen one another, dispelling the illusion that the ecologist's role ends with initial provision of data. Second, we show that many valuable insights, products, and theoretical developments are produced through sustained interdisciplinary collaborations between empiricists and modelers, regardless of eventual inclusion of a process in an ESM. Finally, we provide concrete actions and resources to facilitate learning and collaboration at every stage of data-model integration. This framework will create synergies that will transform our understanding of ecology within the Earth system, ultimately improving our understanding of global environmental change and broadening the impact of ecological research.
- Winter cover cropping increases albedo and latent heat flux in a Texas High Plains agroecosystemMcNellis, Risa; van Gestel, Natasja; Thomas, R. Quinn; Smith, Nicholas G. (2024-02-22)Winter cover crops represent a land cover change that may sequester carbon in the soil and improve agricultural sustainability. Their adoption may also change the Earth’s radiative balance and result in biophysical feedbacks to climate through alterations in albedo and latent heat fluxes. Understanding the mechanisms underlying these alterations to the radiative balance is important for making reliable future climate projections. However, data on cover crop biophysics are limited, requiring models to rely on data from summer plants for parameterization, likely biasing predictions. To address this gap, we measured the albedo and stomatal conductance of two summer crops and three winter crops on farms in the High Plains region of Texas. We also established a winter cover crop field experiment with two cover crops and fallow fields to estimate the change in albedo and latent heat flux that results from a switch to winter cover cropping. We found that albedo was significantly higher in winter-like conditions than in summer-like conditions due to an increase in plant albedo and a reduction in leaf area index. The albedo of winter cover crops was higher than the soil albedo, resulting in an increase in top-of-atmosphere reflected radiation of 7%–14% when converting from fallow fields to winter cover cropped fields. There was an additional cooling effect through doubling of the estimated latent heat flux caused by the presence of cover crops. The combined changes in albedo and latent heat resulted in a change in the surface energy balance that is associated with an overall cooling effect of winter cover crops on surface atmospheric temperatures. While this effect is likely to be region-specific, these results strongly indicate that winter cover crops alter the surface albedo and latent heat flux of agricultural fields and provide a direct cooling effect in the High Plains region of Texas.