Browsing by Author "Soker, Shay"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Adaptive Control of Waveguide Modes in Two-Mode FibersLu, Peng (Virginia Tech, 2016-04-04)Few mode fibers and multimode fibers (MMFs) are traditionally regarded as unsuitable for important applications such as communications and sensing. A major challenge in using MMFs for aforementioned applications is how to precisely control the waveguide modes propagating within MMFs. In this thesis, we experimentally demonstrate a generic method for controlling the linearly polarized (LP) modes within a two-mode fiber (TMF). Our method is based on adaptive optics (AO), where one utilizes proper feedback signals to shape the wavefront of the input beam in order to achieve the desired LP mode composition. In the first part of this thesis, we demonstrate the feasibility of AO-based mode control by using the correlation between the experimentally measured field distribution and the desired mode profiles as feedback for wavefront optimization. Selectively excitation of pure LP modes or their combinations at the distal end of a TMF are shown. Furthermore, we demonstrate that selective mode excitation in the TMF can be achieved by using only 5×5 independent phase blocks. Afterwards, we extend our AO-based mode control method to more practical scenarios, where feedback signals are provided by all-fiber devices such as a directional fiber coupler or fiber Bragg gratings (FBGs). Using the coupling ratio of a directional coupler as feedback, we demonstrate adaptive control of LP modes at the two output ports of the directional coupler. With feedback determined by the relative magnitude of optical power reflected by a FBG and the transmitted power, selective excitations of the LP01 and the LP11 modes are experimentally shown. As the final component of this thesis, we experimentally combine the AO-based mode control with time-division-multiplexing. By choosing reflected pulses with appropriate arrival time for mode control, we can selectively excite the LP11 mode at different FBG locations within the TMF, based on the ratio of optical signals reflected by FBGs in the TMF and the transmitted signal. Using two lasers set at the two FBG peak reflection wavelengths associated with the LP01 and the LP11 modes, we can accomplish AO-based mode control within a TMF by using only the reflection signals from the FBG. By using the ratio of the reflected signals of two lasers as feedback, we demonstrate selective excitation of almost pure LP01 or LP11 mode at the FBG location within the TMF. The method developed in this thesis is generic and can be extended to many other applications using appropriately chosen feedback signals. It is possible to generalize the AO-based mode control method to MMF as well. This method may find important applications in MMF-based communication, sensing and imaging et. al. in the future.
- Cell Migration on Opposing Rigidity Protein Gradients: Single Cell and Co-culture StudiesJain, Gaurav (Virginia Tech, 2014-10-31)Cell migration is a complex physiological process that is important from embryogenesis to senescence. In vivo, the migration of cells is guided by a complex combination of signals and cues. Directed migration is typically observed when one of these cues is presented to cells as a gradient. Several studies have been conducted into directed migration on gradients that are purely mechanical or chemical. Our goal was to investigate cellular migratory behavior when cells are presented with a choice and have to choose between increasing substrate rigidity or higher protein concentration. We chose to focus on this unique environment since it recapitulates several interfacial regions in vivo. We have designed novel hydrogels that exhibit dual and opposing chemical and mechanical profiles using photo-polymerization. Our studies demonstrate that durotaxis, a well-known phenomenon, can be reversed when cells sense a steep protein profile in the opposite direction. Fibroblasts were co-cultured with macrophages to obtain an understanding on how migration occurs when two different cell types are present in the same microenvironment. First, we investigated the migratory behavior of macrophages. These cell types exhibited a statistically significant preference to move towards the rigid/low collagen region of the interface. Interestingly, fibroblasts when co-cultured with macrophages, exhibited a preference for the low modulus-high collagen region of the interface. However, with the current sample size, these trends are statistically insignificant. On the contrary, the presence of fibroblasts in the cellular microenvironment did not result in the reversal of durotaxis exhibited by macrophages. Macrophages secreted significantly higher levels of secreted tumor necrosis factor (TNF-alpha) in mono-cultures in contrast to fibroblast-macrophage co-cultures. This trend could be an indication of macrophage plasticity between mono- and co-cultures. In summary, we have designed dual and opposing rigidity-protein gradients on a hydrogel substrate that can provide new insights into cellular locomotion. These results can be used to design biomimetic interfaces, biomaterial implants and for tissue engineering applications.
- Design and nondestructive imaging of a bioengineered vascular graft endotheliumWhited, Bryce Matthew (Virginia Tech, 2013-02-01)Cardiovascular disease is currently the leading cause of death in the U.S. that frequently requires bypass surgery using vascular grafts for treatment. Current limitations with fully synthetic grafts have led researchers to bioengineered alternatives that consist of a combination of vascular scaffolds and cells. A major challenge in creating a functional bioengineered vascular graft is development of a confluent endothelium on the lumen that is able to resist detachment under physiologic fluid flow. In addition, methodologies used to assess the growth and maturation of the endothelium in a noninvasive and dynamic manner are severely lacking. Therefore, the overall goal of this research is to advance the field of vascular tissue engineering by 1) creating methodologies to enhance EC adherence to a vascular graft and 2) development of a noninvasive and real-time imaging system capable of assessing the graft endothelium. To achieve these objectives, three separate studies were performed. In the first study, electrospun scaffold fiber diameter and alignment were systematically varied to determine their effect on endothelial cell (EC) morphology and adherence under fluid flow. ECs on uniaxially aligned nanofibers displayed elongated and aligned morphologies leading to higher adherence to the scaffolds under physiologic levels of fluid flow as compared to those on randomly oriented scaffolds. In the second study, a fiber optic based (FOB) imaging system was developed to image fluorescent ECs through a thick electrospun scaffold. Results demonstrated that the FOB imaging system was able to accurately visualize fluorescent ECs in a noninvasive manner through the thick and highly opaque scaffold. In the final study, the FOB imaging system was used to noninvasively quantify vascular graft endothelialization, EC detachment, and apoptosis through the vessel wall with greater imaging penetration depth than two-photon microscopy. Additionally, the FOB method was capable of continuously tracking EC migration and endothelialization of a bioengineered graft in a bioreactor. Overall, these results demonstrate that aligned scaffold topographies enhance EC adherence under fluid flow and the FOB imaging system is a promising tool to monitor endothelium development and response to fluid flow in a manner that has not previously been afforded using conventional imaging methods.
- Dynamic Non-Destructive Monitoring of Bioengineered Blood Vessel Development within a Bioreactor using Multi-Modality ImagingGurjarpadhye, Abhijit Achyut (Virginia Tech, 2013-08-20)Regenerative medicine involves formation of tissue or organ for replacement of a wounded or dysfunctional tissue. Healthy cells extracted from the patient are expanded and are seeded on a three-dimensional biodegradable scaffold. The structure is then placed in a bioreactor and is provided with nutrients for the cells, which proliferate and migrate throughout the scaffold to eventually form a desired to tissue that can be transplanted into the patient's body. Inability to monitor this complex process of regeneration in real-time makes control and optimization of this process extremely difficult. Histology, the gold standard used for tissue structural assessment, is a static technique that only provides "snapshots" of the progress and requires the specimen to be sacrificed. This inefficiency severely limits our understanding of the biological processes associated with tissue growth during the in vitro pre-conditioning phase. Optical Coherence Tomography (OCT) enables imaging of cross sectional structure in biological tissues by measuring the echo time delay of backreflected light. OCT has recently emerged as an important method to assess the structures of physiological, pathological as well as tissue engineered blood vessels. The goal of the present study is to develop an imaging system for non-destructive monitoring of blood vessels maturing within a bioreactor. Non-destructive structural imaging of tissue-engineered blood vessels cultured in a novel bioreactor was performed using free-space and catheter-based OCT imaging, while monitoring of the endothelium development was performed using a fluorescence imaging system that utilizes a commercial OCT catheter. The project included execution of three specific aims. Firstly, we developed OCT instrumentation to determine geometrical and optical properties of porcine and human skin in real-time. The purpose of the second aim was to assess structural development of tissue-engineered blood vessels maturing in a bioreactor. We constructed a novel quartz-based bioreactor that will permit free space and catheter-based OCT imaging of vascular grafts. The grafts were made of biodegradable PCL-collagen and seeded with multipotent mesenchymal cells. We imaged the maturing grafts over 30 days to assess changes in graft wall thickness. We also monitored change in optical properties of the grafts based on free-space OCT scanning. Finally, in order to visualize the proliferation of endothelial cells and development of the endothelium, we developed an imaging system that utilizes a commercial OCT catheter for single-cell-level imaging of the growing endothelium of a tissue-engineered blood vessel. We have developed two modules of an imaging system for non-destructive monitoring of maturing bioengineered vascular grafts. The first module provides the ability to non-destructively examine the structure of the grafts while the second module can track the progress of endothelialization. As both modules use the same endoscope for imaging, when operated in sequence, they will produce high-resolution, three-dimensional, structural details of the graft and two-dimensional spatial distribution of ECs on the lumen. This non-destructive, multi-modality imaging can be potentially used to monitor and assess the development of luminal bioengineered constructs such as colon or trachea.
- Dynamic, Nondestructive Imaging of a Bioengineered Vascular Graft EndotheliumWhited, Bryce M.; Hofmann, Matthias C.; Lu, Peng; Xu, Yong; Rylander, Christopher G.; Wang, Ge; Sapoznik, Etai; Criswell, Tracy; Lee, Sang Jin; Soker, Shay; Rylander, M. Nichole (PLOS, 2013-04-09)Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB) imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning.
- In Vitro Proliferation of Porcine Pancreatic Islet Cells for β-Cell Therapy ApplicationsNiu, Guoguang; McQuilling, John P.; Zhou, Yu; Opara, Emmanuel C.; Orlando, Giuseppe; Soker, Shay (Hindawi, 2016-12-06)β-Cell replacement through transplantation is the only curative treatment to establish a long-term stable euglycemia in diabetic patients. Owing to the shortage of donor tissue, attempts are being made to develop alternative sources of insulin-secreting cells. Stem cells differentiation and reprograming as well as isolating pancreatic progenitors from different sources are some examples; however, no approach has yet yielded a clinically relevant solution. Dissociated islet cells that are cultured in cell numbers by in vitro proliferation provide a promising platform for redifferentiation towards β-cells phenotype. In this study, we cultured islet-derived cells in vitro and examined the expression of β-cell genes during the proliferation. Islets were isolated from porcine pancreases and enzymatically digested to dissociate the component cells. The cells proliferated well in tissue culture plates and were subcultured for no more than 5 passages. Only 10% of insulin expression, as measured by PCR, was preserved in each passage. High glucose media enhanced insulin expression by about 4–18 fold, suggesting a glucose-dependent effect in the proliferated islet-derived cells. The islet-derived cells also expressed other pancreatic genes such as Pdx1, NeuroD, glucagon, and somatostatin. Taken together, these results indicate that pancreatic islet-derived cells, proliferated in vitro, retained the expression capacity for key pancreatic genes, thus suggesting that the cells may be redifferentiated into insulin-secreting β-like cells.
- Localized Excitation Fluorescence Imaging (LEFI)Hofmann, Matthias Colin (Virginia Tech, 2012-05-04)A major limitation in tissue engineering is the lack of nondestructive methods to assess the development of tissue scaffolds undergoing preconditioning in bioreactors. Due to significant optical scattering in most scaffolding materials, current microscope-based imaging methods cannot "see" through thick and optically opaque tissue constructs. To address this deficiency, we developed a scanning fiber imaging method capable of nondestructive imaging of fluorescently labeled cells through a thick and optically opaque vascular scaffold, contained in a bioreactor. This imaging modality is based on local excitation of fluorescent cells, acquisition of fluorescence through the scaffold, and fluorescence mapping based on the position of the excitation light. To evaluate the capability and accuracy of the imaging system, human endothelial cells, stably expressing green fluorescent protein (GFP), were imaged through a fibrous scaffold. Without sacrificing the scaffolds, we nondestructively visualized the distribution of GFP-labeled endothelial cells on the luminal surface through a ~500 µm thick tubular scaffold at cell-level resolutions and distinct localization. These results were similar to control images obtained using an optical microscope with direct line-of-sight access. Through a detailed quantitative analysis, we demonstrated that this method achieved a resolution of the order of 20-30 µm, with 10% or less deviation from standard optical microscopy. Furthermore, we demonstrated that the penetration depth of the imaging method exceeded that of confocal laser scanning microscopy by more than a factor of 2. Our imaging method also possesses a working distance (up to 8 cm) much longer than that of a standard confocal microscopy system, which can significantly facilitate bioreactor integration. This method will enable nondestructive monitoring of endothelial cells seeded on the lumen of a tissue-engineered vascular graft during preconditioning in vitro, as well as for other tissue-engineered constructs in the future.
- Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platformSkardal, Aleksander; Murphy, Sean V.; Devarasetty, Mahesh; Mead, Ivy; Kang, Hyun-Wook; Seol, Young-Joon; Zhang, Yu Shrike; Shin, Su-Ryon; Zhao, Liang; Aleman, Julio; Hall, Adam R.; Shupe, Thomas D.; Kleensang, Andre; Dokmeci, Mehmet R.; Lee, Sang Jin; Jackson, John D.; Yoo, James J.; Hartung, Thomas; Khademhosseini, Ali; Soker, Shay; Bishop, Colin E.; Atala, Anthony (Springer Nature, 2017-08-18)Many drugs have progressed through preclinical and clinical trials and have been available - for years in some cases -before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.
- Theoretical Considerations of Biological Systems in the Presence of High Frequency Electric Fields: Microfluidic and Tissue Level ImplicationsSano, Michael B. (Virginia Tech, 2012-06-14)The research presented in this dissertation is the result of our laboratory's effort to develop a microfluidic platform to interrogate, manipulate, isolate, and enrich rare mammalian cells dispersed within heterogeneous populations. Relevant examples of these target cells are stem cells within a differentiated population, circulating tumor cells (CTCs) in the blood stream, and tumor initiating cells (TICs) in a population of benign cancer cells. The ability to isolate any of these rare cells types with high efficiency will directly lead to advances in tissue engineering, cancer detection, and individualized medicine. This work lead directly to the development of a new cell manipulation technique, termed contactless dielectrophoresis (cDEP). In this technique, cells are isolated from direct contact with metal electrodes by employing fluid electrode channels filled with a highly conductive media. Thin insulating barriers, approximately 20 μm, serve to isolate the fluid electrode channels from the low conductivity sample buffer. The insulating barriers in a fluid-electrical system create a number of unique and interesting challenges from an electrical engineering standpoint. Primarily, they block the flow of DC currents and create a non-constant frequency response which can confound experimental results attempting to characterize the electrical characteristics of cells. Due to these, and other, considerations, the use of high-voltage high-frequency signals are necessary to successfully manipulate cells. The effect of these high frequency fields on cells are studied and applied to microfluidic and tissue level applications. In later chapters, theoretical and experimental results show how high frequency and pulsed electric fields can ablate cells and tissue. Understanding the parameters necessary to electroporate cells aids in the development of cDEP devices where this phenomenon is undesirable and gives insight towards the development of new cancer ablation therapies where targeted cell death is sought after. This work shows that there exists a finite frequency spectrum over which cDEP devices can operate in which cells are minimally affected by the induced electric fields. Finally, lessons learned in the course of the development of cDEP were adapted and applied towards cancer ablation therapies where electroporation are favorable. It was found that bursts of high frequency pulsed electric fields can successfully kill cells and ablate tissue volumes through a process termed High Frequency Irreversible Electroporation (H-FIRE). This technique is advantageous as these waveforms mitigate or eliminate muscle contractions associated with traditional IRE technologies. Similarly, the use of fluid electrodes in cDEP inspired the use of an organs vascular system as the conductive pathway to deliver pulses. This novel approach allows for the ablation of large volumes of tissue without the use of puncturing electrodes. These techniques are currently undergoing evaluation in tissue engineering applications and pre-clinical evaluation in veterinary patients.